26,498 research outputs found

    Locally Estimating Core Numbers

    Full text link
    Graphs are a powerful way to model interactions and relationships in data from a wide variety of application domains. In this setting, entities represented by vertices at the "center" of the graph are often more important than those associated with vertices on the "fringes". For example, central nodes tend to be more critical in the spread of information or disease and play an important role in clustering/community formation. Identifying such "core" vertices has recently received additional attention in the context of {\em network experiments}, which analyze the response when a random subset of vertices are exposed to a treatment (e.g. inoculation, free product samples, etc). Specifically, the likelihood of having many central vertices in any exposure subset can have a significant impact on the experiment. We focus on using kk-cores and core numbers to measure the extent to which a vertex is central in a graph. Existing algorithms for computing the core number of a vertex require the entire graph as input, an unrealistic scenario in many real world applications. Moreover, in the context of network experiments, the subgraph induced by the treated vertices is only known in a probabilistic sense. We introduce a new method for estimating the core number based only on the properties of the graph within a region of radius δ\delta around the vertex, and prove an asymptotic error bound of our estimator on random graphs. Further, we empirically validate the accuracy of our estimator for small values of δ\delta on a representative corpus of real data sets. Finally, we evaluate the impact of improved local estimation on an open problem in network experimentation posed by Ugander et al.Comment: Main paper body is identical to previous version (ICDM version). Appendix with additional data sets and enlarged figures has been added to the en

    Shuttle electrical environment

    Get PDF
    Part of an AFGL payload flown on the STS-4 mission consisted of experiments to measure in-situ electric fields, electron densities, and vehicle charging. During this flight some 11 hours of data were acquired ranging from 5 minute snapshots up to continuous half-orbits. These experiments are described and results presented for such vehicle induced events as a main engine burn, thruster firings and water dumps in addition to undisturbed periods. The main characteristic of all the vehicle induced events is shown to be an enhancement in the low frequency noise (less than 2 kHz), in both the electrostatic and electron irregularity (delta N/N) spectra. The non-event results indicate that the electrostatic broadband emissions show a white noise characteristic in the low frequency range up to 2 kHz at an amplitude of 10 db above the shuttle design specification limit, falling below that limit above 10 kHz. The vehicle potential remained within the range of -3 to +1 volt throughout the flight which exhibits normal behavior for a satellite in a low equatorial orbit

    Bose-Einstein Correlations and the Equation of State of Nuclear Matter

    Get PDF
    Within a relativistic hydrodynamic framework, we use four different equations of state of nuclear matter to compare to experimental spectra from CERN/SPS experiments NA44 and NA49. Freeze-out hypersurfaces and Bose-Einstein correlation functions for identical pion pairs are discussed. We find that two-pion Bose-Einstein interferometry measures the relationship between the temperature and the energy density in the equation of state during the late hadronic stage of the fireball expansion. Little sensitivity of the light-hadron data to a quark-gluon plasma phase-transition is seen.Comment: 4 pages, including 4 figures. You can also download a PostScript file of the manuscript from http://p2hp2.lanl.gov/people/schlei/eprint.htm

    Ramsey interferometry with oppositely detuned fields

    Get PDF
    We report a narrowing of the interference pattern obtained in an atomic Ramsey interferometer if the two separated fields have different frequency and their phase difference is controlled. The width of the Ramsey fringes depends inversely on the free flight time of ground state atoms before entering the first field region in addition to the time between the fields. The effect is stable also for atomic wavepackets with initial position and momentum distributions and for realistic mode functions.Comment: 6 pages, 6 figure
    corecore