20 research outputs found

    Evidence of decline of malaria in the general hospital of Libreville, Gabon from 2000 to 2008

    Get PDF
    BACKGROUND: Substantial decline in malaria transmission, morbidity and mortality has been reported in several countries where new malaria control strategies have been implemented. In Gabon, the national malaria policy changed in 2003, according to the WHO recommendations. The trend in malaria morbidity was evaluated among febrile children before and after their implementation in Libreville, the capital city of Gabon. METHODS: From August 2000 to December 2008, febrile paediatric outpatients and inpatients, under 11 years of age, were screened for malaria by microscopic examination at the Malaria Clinical Research Unit (MCRU) located in the largest public hospital in Gabon. Climatic data were also collected. RESULTS: In total, 28,092 febrile children were examined; those under five years always represented more than 70%. The proportion of malaria-positive slides was 45% in 2000, and declined to 15% in 2008. The median age of children with a positive blood smear increased from 24(15-48) to 41(21-72) months over the study period (p < 0.01). Rainfall patterns had no impact on the decline observed throughout the study period. CONCLUSION: The decrease of malaria prevalence among febrile children during the last nine years is observed following the introduction of new strategies of malaria cases management, and may announce epidemiological changes. Moreover, preventive measures must be extended to children older than five years

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Prozone in malaria rapid diagnostics tests: how many cases are missed?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prozone means false-negative or false-low results in antigen-antibody reactions, due to an excess of either antigen or antibody. The present study prospectively assessed its frequency for malaria rapid diagnostic tests (RDTs) and <it>Plasmodium falciparum </it>samples in an endemic field setting.</p> <p>Methods</p> <p>From January to April 2010, blood samples with <it>P. falciparum </it>high parasitaemia (≥ 4% red blood cells infected) were obtained from patients presenting at the Provincial Hospital of Tete (Mozambique). Samples were tested undiluted and 10-fold diluted in saline with a panel of RDTs and results were scored for line intensity (no line visible, faint, weak, medium and strong). Prozone was defined as a sample which showed no visible test line or a faint or weak test line when tested undiluted, and a visible test line of higher intensity when tested 10-fold diluted, as observed by two blinded observers and upon duplicate testing.</p> <p>Results</p> <p>A total of 873/7,543 (11.6%) samples showed <it>P. falciparum</it>, 92 (10.5%) had high parasitaemia and 76 were available for prozone testing. None of the two Pf-pLDH RDTs, but all six HRP-2 RDTs showed prozone, at frequencies between 6.7% and 38.2%. Negative and faint HRP-2 lines accounted for four (3.8%) and 15 (14.4%) of the 104 prozone results in two RDT brands. For the most affected brand, the proportions of prozone with no visible or faint HRP-2 lines were 10.9% (CI: 5.34-19.08), 1.2% (CI: 0.55-2.10) and 0.1% (CI: 0.06-0.24) among samples with high parasitaemia, all positive samples and all submitted samples respectively. Prozone occurred mainly, but not exclusively, among young children.</p> <p>Conclusion</p> <p>Prozone occurs at different frequency and intensity in HRP-2 RDTs and may decrease diagnostic accuracy in the most affected RDTs.</p

    Intramuscular Artesunate for Severe Malaria in African Children: A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Current artesunate (ARS) regimens for severe malaria are complex. Once daily intramuscular (i.m.) injection for 3 d would be simpler and more appropriate for remote health facilities than the current WHO-recommended regimen of five intravenous (i.v.) or i.m. injections over 4 d. We compared both a three-dose i.m. and a three-dose i.v. parenteral ARS regimen with the standard five-dose regimen using a non-inferiority design (with non-inferiority margins of 10%). METHODS AND FINDINGS: This randomized controlled trial included children (0.5-10 y) with severe malaria at seven sites in five African countries to assess whether the efficacy of simplified three-dose regimens is non-inferior to a five-dose regimen. We randomly allocated 1,047 children to receive a total dose of 12 mg/kg ARS as either a control regimen of five i.m. injections of 2.4 mg/kg (at 0, 12, 24, 48, and 72 h) (n = 348) or three injections of 4 mg/kg (at 0, 24, and 48 h) either i.m. (n = 348) or i.v. (n = 351), both of which were the intervention arms. The primary endpoint was the proportion of children with ≥ 99% reduction in parasitemia at 24 h from admission values, measured by microscopists who were blinded to the group allocations. Primary analysis was performed on the per-protocol population, which was 96% of the intention-to-treat population. Secondary analyses included an analysis of host and parasite genotypes as risks for prolongation of parasite clearance kinetics, measured every 6 h, and a Kaplan-Meier analysis to compare parasite clearance kinetics between treatment groups. A post hoc analysis was performed for delayed anemia, defined as hemoglobin ≤ 7 g/dl 7 d or more after admission. The per-protocol population was 1,002 children (five-dose i.m.: n = 331; three-dose i.m.: n = 338; three-dose i.v.: n = 333); 139 participants were lost to follow-up. In the three-dose i.m. arm, 265/338 (78%) children had a ≥ 99% reduction in parasitemia at 24 h compared to 263/331 (79%) receiving the five-dose i.m. regimen, showing non-inferiority of the simplified three-dose regimen to the conventional five-dose regimen (95% CI -7, 5; p = 0.02). In the three-dose i.v. arm, 246/333 (74%) children had ≥ 99% reduction in parasitemia at 24 h; hence, non-inferiority of this regimen to the five-dose control regimen was not shown (95% CI -12, 1; p = 0.24). Delayed parasite clearance was associated with the N86YPfmdr1 genotype. In a post hoc analysis, 192/885 (22%) children developed delayed anemia, an adverse event associated with increased leukocyte counts. There was no observed difference in delayed anemia between treatment arms. A potential limitation of the study is its open-label design, although the primary outcome measures were assessed in a blinded manner. CONCLUSIONS: A simplified three-dose i.m. regimen for severe malaria in African children is non-inferior to the more complex WHO-recommended regimen. Parenteral ARS is associated with a risk of delayed anemia in African children. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201102000277177

    Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    Get PDF
    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals

    Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    No full text
    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles
    corecore