1,225 research outputs found
Recommended from our members
The depth of the convective boundary layer and implications for a Walker-like circulation on Mars
Radio science observations indicate that the depth of the martian convective boundary layer varies strongly with surface height, although the surface temperature does not. We show that this effect is reproduced in martian limited area models and in global climate models. The implications for the global circulation when convective boundary layer depth varies with location are considered
Recommended from our members
Martian meso/micro-scale winds and surface energy budget
Regional, diurnal and seasonal variations of surface
temperature are particularly large on Mars. This is mostly due to the Martian surface remaining close to radiative equilibrium. Contrary to most terrestrial locations, contributions of sensible heat flux (i.e. conduction/convection exchanges between atmosphere and surface) to the surface energy budget [hereinafter SEB] are negligible on Mars owing to lowatmospheric density and heat capacity (e.g. Figure 2 in Savijärvi and Kauhanen, 2008). This radiative control of surface temperature is a key characteristic of the Martian environment and has crucial consequences on the the Martian geology, meteorology, exobiology, etc.
In order to identify the impact of this Martian peculiarity to near-surface regional-to-local atmospheric circulations,
we employ our recently-built Martian limited-area meteorological model (Spiga and Forget, 2009). We use horizontal resolutions adapted to the dynamical phenomena we aim to resolve: from several tens of kilometers to compute regional winds (mesoscale simulations) to several tens of meters to compute atmospheric boundary-layer winds (microscale or turbulent-resolving simulations, also called Large-Eddy Simulations, LES)
Patient centred diagnosis: sharing diagnostic decisions with patients in clinical practice.
Patient centred diagnosis is best practised through shared decision making; an iterative dialogue between doctor and patient, whichrespects a patient’s needs, values, preferences, and circumstances.
Shared decision making for diagnostic situations differs fundamentally from that for treatment decisions. This has important implications when considering its practical application.
The nature of dialogue should be tailored to the specific diagnostic decision; scenarios with higher stakes or uncertainty usually require more detailed conversation
Radio science measurements of atmospheric refractivity with Mars Global Surveyor
Radio occultation experiments with Mars Global Surveyor measure the refractive index of the Martian atmosphere from the surface to ~250 km in geopotential height. Refractivity is proportional to neutral density at low altitudes and electron density at high altitudes, with a transition at ~75 km. We use weighted least squares to decompose zonal refractivity variations into amplitudes and phases for observed wave numbers k=1-4 over the entire altitude range and use the results to analyze atmospheric structure and dynamics. The data set consists of 147 refractivity profiles acquired in December 2000 at summer solstice in the Martian northern hemisphere. The measurements are at an essentially fixed local time (sunrise) and at latitudes from 67deg to 70degN. Thermal tides appear to be responsible for much of the observed ionospheric structure from 80 to 220 km. Tides modulate the neutral density, which in turn, controls the height at which the ionosphere forms. The resulting longitude-dependent vertical displacement of the ionosphere generates distinctive structure in the fitted amplitudes, particularly at k=3, within plusmn50 km of the electron density peak height. Our k=3 observations are consistent with an eastward propagating semidiurnal tide with zonal wave number 1. Relative to previous results, our analysis extends the characterization of tides to altitudes well above and below the electron density peak. In the neutral atmosphere, refractivity variations from the surface to 50 km appear to arise from stationary Rossby waves. Upon examining the full vertical range, stationary waves appear to dominate altitudes below ~75 km, and thermal tides dominate altitudes above this transition region
Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn
The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered
Observation of the Isospin-Violating Decay
Using data collected with the CLEO~II detector, we have observed the
isospin-violating decay . The decay rate for this mode,
relative to the dominant radiative decay, is found to be .Comment: 8 page uuencoded postscript file, also available through
http://w4.lns.cornell.edu/public/CLN
Measurement of the Inclusive Semi-electronic Branching Fraction
Using the angular correlation between the emitted in a decay and the emitted in the subsequent decay, we have measured the branching fraction for the
inclusive semi-electronic decay of the meson to be: {\cal B}(D^0
\rightarrow X e^+ \nu) = [6.64 \pm 0.18 (stat.) \pm 0.29 (syst.)] \%. The
result is based on 1.7 fb of collisions recorded by the CLEO II
detector located at the Cornell Electron Storage Ring (CESR). Combining the
analysis presented in this paper with previous CLEO results we find,
\frac{{\cal B} (D^0 \rightarrow X e^+ \nu)}
{{\cal B} (D^0 \rightarrow K^- \pi^+)}
= 1.684 \pm 0.056 (stat.) \pm 0.093(syst.) and
\frac{{\cal B}(D\rightarrow K^-e^+\nu)}
{{\cal B}(D\rightarrow Xe^+\nu)}
= 0.581 \pm 0.023 (stat.) \pm 0.028(syst.).
The difference between the inclusive rate and the sum of the measured
exclusive branching fractions (measured at CLEO and other experiments) is of the inclusive rate.Comment: Latex file, 33pages, 4 figures Submitted to PR
Study of Gluon versus Quark Fragmentation in and Events at \sqrt{s}=10 GeV
Using data collected with the CLEO II detector at the Cornell Electron
Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity
observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity
observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for
jet-jet masses less than 7 GeV.Comment: 15 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Observation of Two Narrow States Decaying into and
We report the first observation of two narrow charmed strange baryons
decaying to and , respectively, using data from
the CLEO II detector at CESR. We interpret the observed signals as the
and , the symmetric partners
of the well-established antisymmetric and .
The mass differences and
are measured to be and
, respectively.Comment: 11 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Branching Fractions of tau Leptons to Three Charged Hadrons
From electron-positron collision data collected with the CLEO detector
operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the
branching fractions for tau decays into three explicitly identified hadrons and
a neutrino are presented as {\cal
B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to
K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to
K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to
K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are
statistical and systematic, respectively.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let
- …
