301,414 research outputs found
The Angular Momentum Distribution within Halos in Different Dark Matter Models
We study the angular momentum profile of dark matter halos for a statistical
sample drawn from a set of high-resolution cosmological simulations of
particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and
the halos are selected to have at least particles in order to
reliably measure the angular momentum profile. In contrast with the recent
claims of Bullock et al., we find that the degree of misalignment of angular
momentum within a halo is very high. About 50 percent of halos have more than
10 percent of halo mass in the mass of negative angular momentum . After the
mass of negative is excluded, the cumulative mass function follows
approximately the universal function proposed by Bullock et al., though we
still find a significant fraction of halos () which exhibit
systematic deviations from the universal function. Our results, however, are
broadly in good agreement with a recent work of van den Bosch et al.. We also
study the angular momentum profile of halos in a Warm Dark Matter (WDM) model
and a Self-Interacting Dark Matter (SIDM) model. We find that the angular
momentum profile of halos in the WDM is statistically indistinguishable from
that in the CDM model, but the angular momentum of halos in the SIDM is reduced
by the self-interaction of dark matter.Comment: 23 pages, 10 figures, 2 tables. Revised version, added a new table,
accepted for publication in MNRA
A mass-balance/photochemical assessment of DMS sea-to-air flux as inferred from NASA GTE PEM-West a and B observations
This study reports dimethyl sulfide (DMS) sea-to-air fluxes derived from a mass-balance/photochemical-modeling approach. The region investigated was the western North Pacific covering the latitude range of 0°-30°N. Two NASA airborne databases were used in this study: PEM-West A in September-October 1991 and PEM-West B in February-March 1994. A total of 35 boundary layer (BL) sampling runs were recorded between the two programs. However, after filtering these data for pollution impacts and DMS lifetime considerations, this total was reduced to 13. Input for each analysis consisted of atmospheric DMS measurements, the equivalent mixing depth (EMD) for DMS, and model estimated values for OH and NO3. The evaluation of the EMD took into account both DMS within the BL as well as that transported into the overlying atmospheric buffer layer (BuL). DMS fluxes ranged from 0.6 to 3.0 μmol m-2d-1 for PEM-West A (10 sample runs) and 1.4 to 1.9 μmol m-2d-1 for PEM-West B (3 sample runs). Sensitivity analyses showed that the photochemically evaluated DMS flux was most influenced by the DMS vertical profile and the diel profile for OH. A propagation of error analysis revealed that the uncertainty associated with individual flux determinations ranged from a factor of 1.3 to 1.5. Also assessed were potential systematic errors. The first of these relates to our noninclusion of large-scale mean vertical motion as it might appear in the form of atmospheric subsidence or as a convergence. Our estimates here would place this error in the range of O to 30%. By far the largest systematic error is that associated with stochastic events (e.g., those involving major changes in cloud coverage). In the latter case, sensitivity tests suggested that the error could be as high as a factor of 2. With improvements in such areas as BL sampling time, direct observations of OH, improved DMS vertical profiling, direct assessment of vertical velocity in the field, and preflight (24 hours) detailed meteorological data, it appears that the uncertainty in this approach could be reduced to ±25%. Copyright 1999 by the American Geophysical Union
Low density expansion and isospin dependence of nuclear energy functional: comparison between relativistic and Skyrme models
In the present work we take the non relativistic limit of relativistic models
and compare the obtained functionals with the usual Skyrme parametrization.
Relativistic models with both constant couplings and with density dependent
couplings are considered. While some models present very good results already
at the lowest order in the density, models with non-linear terms only reproduce
the energy functional if higher order terms are taken into account in the
expansion.Comment: 16 pages,6 figures,5 table
Some Comments on an MeV Cold Dark Matter Scenario
We discuss several aspects of astroparticle physics pertaining to a new model
with MeV cold dark matter particles, which annihilate to electron-positron
pairs in a manner yielding the correct CDM density required today, and
explaining the enhanced electron-positron annihilation line from the center of
the Galaxy. We note that the mass of the vector meson mediating the
annihilations, should exceed the mass of CDM particle, and comment on possible
enhancement due to CDM clustering, on the detectability of the new CDM, and on
particle physics models incorporating this scenario.Comment: 13 pages, 2 figures. v2 - Added some remarks regarding a more
stringent mass bound. References added, some typos corrected. v3 - Added a
comment regarding the invalidity of perturbative calculation in the case of a
very small coupling g'. Removed the comment regarding the smallness of the
angular width of the 511 keV lin
Tunable asymmetric reflectance in silver films near the percolation threshold
We report on the optical characterization of semicontinuous nanostructured
silver films exhibiting tunable optical reflectance asymmetries. The films are
obtained using a multi-step process, where a nanocrystalline silver film is
first chemically deposited on a glass substrate and then subsequently coated
with additional silver via thermal vacuum-deposition. The resulting films
exhibit reflectance asymmetries whose dispersions may be tuned both in sign and
in magnitude, as well as a universal, tunable spectral crossover point. We
obtain a correlation between the optical response and charge transport in these
films, with the spectral crossover point indicating the onset of charge
percolation. Such broadband, dispersion-tunable asymmetric reflectors may find
uses in future light-harvesting systems.Comment: 18 pages, 5 figures, accepted by Journal of Applied Physic
Nonsingular density profiles of dark matter halos and Strong gravitational lensing
We use the statistics of strong gravitational lenses to investigate whether
mass profiles with a flat density core are supported. The probability for
lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS)
with image separations greater than a certain value (ranging from zero to ten
arcseconds) is calculated. NTIS is an analytical model for the postcollapse
equilibrium structure of virialized objects derived by Shapiro, Iliev & Raga.
This profile has a soft core and matches quite well with the mass profiles of
dark matter-dominated dwarf galaxies deduced from their observed rotation
curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all
radii outside of a few NTIS core radii. Unfortunately, comparing the results
with those for singular lensing halos (NFW and SIS+NFW) and strong lensing
observations, the probabilities for lensing by NTIS halos are far too low. As
this result is valid for any other nonsingular density profiles (with a large
core radius), we conclude that nonsingular density profiles (with a large core
radius) for CDM halos are ruled out by statistics of strong gravitational
lenses.Comment: 17 pages, 4 figures, ApJ accepted. Final version matches the proofs.
A curve in figure 2 is corrected, conclusions unchange
HII Regions, Embedded Protostars, and Starless Cores in Sharpless 2-157
We present arcsecond resolution 1.4mm observations of the high mass star
forming region, Sharpless 2-157, that reveal the cool dust associated with the
first stages of star formation. These data are compared with archival images at
optical, infrared, and radio wavelengths, and complemented with new arcsecond
resolution mid-infrared data. We identify a dusty young HII region, numerous
infrared sources within the cluster envelope, and four starless condensations.
Three of the cores lie in a line to the south of the cluster peak, but the most
massive one is right at the center and associated with a jumble of bright radio
and infrared sources. This presents an interesting juxtaposition of high and
low mass star formation within the same cluster which we compare with similar
observations of other high mass star forming regions and discuss in the context
of cluster formation theory.Comment: accepted to ApJ; 6 pages, 3 figure
- …
