8,849 research outputs found

    Chaotic eigenfunctions in momentum space

    Full text link
    We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.Comment: 30 pages. The figures are included in low resolution only. For a version with figures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp99-2.htm

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals

    Autocorrelation function of eigenstates in chaotic and mixed systems

    Full text link
    We study the autocorrelation function of different types of eigenfunctions in quantum mechanical systems with either chaotic or mixed classical limits. We obtain an expansion of the autocorrelation function in terms of the correlation length. For localized states, like bouncing ball modes or states living on tori, a simple model using only classical input gives good agreement with the exact result. In particular, a prediction for irregular eigenfunctions in mixed systems is derived and tested. For chaotic systems, the expansion of the autocorrelation function can be used to test quantum ergodicity on different length scales.Comment: 30 pages, 12 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Quantum metastability in a class of moving potentials

    Get PDF
    In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and Klein. Potential in this class has its height and width scaled in a specific way so that it can be transformed into a stationary one. In deriving the non-decay probability of the system, we argue that the appropriate technique to use is the less known method of scattering states. This method is illustrated through two examples, namely, a moving delta-potential and a moving barrier potential. For expanding potentials, one finds that a small but finite non-decay probability persists at large times. Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure

    Bounds on Integrals of the Wigner Function

    Get PDF
    The integral of the Wigner function over a subregion of the phase-space of a quantum system may be less than zero or greater than one. It is shown that for systems with one degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over all possible states, reduces to the problem of finding the greatest and least eigenvalues of an hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.Comment: 10 pages, 1 PostScript figure, Latex file; revised following referees' comments; to appear in Physical Review Letter

    Tunneling transverse to a magnetic field, and how it occurs in correlated 2D electron systems

    Full text link
    We investigate tunneling decay in a magnetic field. Because of broken time-reversal symmetry, the standard WKB technique does not apply. The decay rate and the outcoming wave packet are found from the analysis of the set of the particle Hamiltonian trajectories and its singularities in complex space. The results are applied to tunneling from a strongly correlated 2D electron system in a magnetic field parallel to the layer. We show in a simple model that electron correlations exponentially strongly affect the tunneling rate.Comment: 4 pages, 3 figure

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator

    Full text link
    The classical and the quantal problem of a particle interacting in one-dimension with an external time-dependent quadratic potential and a constant inverse square potential is studied from the Lie-algebraic point of view. The integrability of this system is established by evaluating the exact invariant closely related to the Lewis and Riesenfeld invariant for the time-dependent harmonic oscillator. We study extensively the special and interesting case of a kicked quadratic potential from which we derive a new integrable, nonlinear, area preserving, two-dimensional map which may, for instance, be used in numerical algorithms that integrate the Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and quantal, is studied via the time-evolution operator which we evaluate using a recent method of integrating the quantum Liouville-Bloch equations \cite{rau}. The results show the exact one-to-one correspondence between the classical and the quantal dynamics. Our analysis also sheds light on the connection between properties of the SU(1,1) algebra and that of simple dynamical systems.Comment: 17 pages, 4 figures, Accepted in PR

    Casimir interaction between two concentric cylinders: exact versus semiclassical results

    Get PDF
    The Casimir interaction between two perfectly conducting, infinite, concentric cylinders is computed using a semiclassical approximation that takes into account families of classical periodic orbits that reflect off both cylinders. It is then compared with the exact result obtained by the mode-by-mode summation technique. We analyze the validity of the semiclassical approximation and show that it improves the results obtained through the proximity theorem.Comment: 28 pages, 5 figures include
    corecore