33,127 research outputs found
Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars
Fusion reactions in the crust of an accreting neutron star are an important
source of heat, and the depth at which these reactions occur is important for
determining the temperature profile of the star. Fusion reactions depend
strongly on the nuclear charge . Nuclei with can fuse at low
densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until
higher densities where the crust is solid and electron capture has made the
nuclei neutron rich. We calculate the factor for fusion reactions of
neutron rich nuclei including O + O and Ne + Ne. We
use a simple barrier penetration model. The factor could be further
enhanced by dynamical effects involving the neutron rich skin. This possible
enhancement in should be studied in the laboratory with neutron rich
radioactive beams. We model the structure of the crust with molecular dynamics
simulations. We find that the crust of accreting neutron stars may contain
micro-crystals or regions of phase separation. Nevertheless, the screening
factors that we determine for the enhancement of the rate of thermonuclear
reactions are insensitive to these features. Finally, we calculate the rate of
thermonuclear O + O fusion and find that O should burn at
densities near g/cm. The energy released from this and similar
reactions may be important for the temperature profile of the star.Comment: 7 pages, 4 figs, minor changes, to be published in Phys. Rev.
Civil tiltrotor missions and applications. Phase 2: The commercial passenger market
The commercial passenger market for the civil tiltrotor was examined in phase 2. A market responsive commercial tiltrotor was found to be technically feasible, and a significant worldwide market potential was found to exist for such an aircraft, especially for relieving congestion in urban area-to-urban area service and for providing cost effective hub airport feeder service. Potential technical obstacles of community noise, vertiport area navigation, surveillance, and control, and the pilot/aircraft interface were determined to be surmountable. Nontechnical obstacles relating to national commitment and leadership and development of ground and air infrastructure were determined to be more difficult to resolve; an innovative public/private partnership is suggested to allow coordinated development of an initial commercial tiltrotor network to relieve congestion in the crowded US Northeast corridor by the year 2000
Neutrino Scattering in Heterogeneous Supernova Plasmas
Neutrinos in core collapse supernovae are likely trapped by neutrino-nucleus
elastic scattering. Using molecular dynamics simulations, we calculate neutrino
mean free paths and ion-ion correlation functions for heterogeneous plasmas.
Mean free paths are systematically shorter in plasmas containing a mixture of
ions compared to a plasma composed of a single ion species. This is because
neutrinos can scatter from concentration fluctuations. The dynamical response
function of a heterogeneous plasma is found to have an extra peak at low
energies describing the diffusion of concentration fluctuations. Our exact
molecular dynamics results for the static structure factor reduce to the Debye
Huckel approximation, but only in the limit of very low momentum transfers.Comment: 11 pages, 13 figure
Fluence and polarisation dependence of GaAs based Lateral Photo-Dember terahertz emitters
We characterise THz output of lateral photo-Dember (LPD) emitters based on semi-insulating (SI), unannealed and annealed low temperature grown (LTG) GaAs. Saturation of THz pulse power with optical fluence is observed, with unannealed LTG GaAs showing highest saturation fluence at 1.1 ± 0.1 mJ cm-2. SI-GaAs LPD emitters show a flip in signal polarity with optical fluence that is attributed to THz emission from the metal-semiconductor contact. Variation in optical polarisation affects THz pulse power that is attributed to a local optical excitation near the metal contact
Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important
references to existing work on uniform approximations, such as Olver's method
applied to the modified Mathieu equation. It is emphasised that the paper
presented here pertains to Fourier space uniform approximation
THE ECONOMIC THRESHOLD FOR GRASSHOPPER CONTROL ON PUBLIC RANGELANDS
The U.S. Department of Agriculture's Animal and Plant Health Inspection Service (APHIS) is responsible for controlling grasshopper populations on public rangelands. Under current guidelines, control of grasshoppers on rangeland should occur if grasshopper densities are at least eight per square yard. This article evaluates the concept of an economic threshold relative to the value of forage saved from destruction during a grasshopper outbreak. It is shown that financial justification for treating grasshopper outbreaks depends upon grasshopper density, rangeland productivity, climate factors, livestock cost and return relationships, and the efficacy of treatment options.Resource /Energy Economics and Policy, Land Economics/Use,
Holonomic quantum computation in decoherence-free subspaces
We show how to realize, by means of non-abelian quantum holonomies, a set of
universal quantum gates acting on decoherence-free subspaces and subsystems. In
this manner we bring together the quantum coherence stabilization virtues of
decoherence-free subspaces and the fault-tolerance of all-geometric holonomic
control. We discuss the implementation of this scheme in the context of quantum
information processing using trapped ions and quantum dots.Comment: 4 pages, no figures. v2: minor changes. To appear in PR
Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2
Heat capacity, resistivity, and magnetic susceptibility measurements confirm
bulk superconductivity in single crystals of BaIrP (T=2.1K) and
BaRhP (T = 1.0 K). These compounds form in the ThCrSi (122)
structure so they are isostructural to both the Ni and Fe pnictides but not
isoelectronic to either of them. This illustrates the importance of structure
for the occurrence of superconductivity in the 122 pnictides. Additionally, a
comparison between these and other ternary phosphide superconductors suggests
that the lack of interlayer bonding favors superconductivity. These
stoichiometric and ambient pressure superconductors offer an ideal playground
to investigate the role of structure for the mechanism of superconductivity in
the absence of magnetism.Comment: Published in Phys Rev B: Rapid Communication
On the Accuracy of the Semiclassical Trace Formula
The semiclassical trace formula provides the basic construction from which
one derives the semiclassical approximation for the spectrum of quantum systems
which are chaotic in the classical limit. When the dimensionality of the system
increases, the mean level spacing decreases as , while the
semiclassical approximation is commonly believed to provide an accuracy of
order , independently of d. If this were true, the semiclassical trace
formula would be limited to systems in d <= 2 only. In the present work we set
about to define proper measures of the semiclassical spectral accuracy, and to
propose theoretical and numerical evidence to the effect that the semiclassical
accuracy, measured in units of the mean level spacing, depends only weakly (if
at all) on the dimensionality. Detailed and thorough numerical tests were
performed for the Sinai billiard in 2 and 3 dimensions, substantiating the
theoretical arguments.Comment: LaTeX, 31 pages, 14 figures, final version (minor changes
- …
