127 research outputs found

    A Request to Bernardus Grootenhuis, Supervisor of the Township of Holland, by Electors of the Township in Order to Pledge Aid for the Allegan to Holland Railroad.

    Get PDF
    A request to Bernardus Grootenhuis, Supervisor of the Township of Holland, by electors of the township in order to pledge aid for the Allegan to Holland railroad. By a vote of 197 to 46, such aid was approved by the electors. The trustees for the election were Bernard Grootenhuis, D. Miedema and A. J. Hillebranus [7].https://digitalcommons.hope.edu/vrp_1860s/1508/thumbnail.jp

    Cytokine Reduction in the Treatment of Joint Conditions

    Get PDF
    The destruction of joints caused by rheumatoid arthritis and osteoarthritis is characterized by an imbalance of enzyme catalysed cartilage breakdown and regeneration. A complex cytokine network perpetuates joint conditions by direct regulation of metalloproteases, by indirect recruitment of cells that secrete degradative enzymes, and by inhibition of reparative processes. The destructive action of cytokines such as interleukin-1, interleukin-6 and tumour necrosis factor-α can be modulated at multiple points associated either with cytokine production or with cytokine action. Potential agents for cytokine reduction include selective anti-cytokine antibodies, anticytokine receptor antibodies, cytokine receptor antagonist proteins, and soluble and chimeric cytokine receptor molecules. Pharmacologic regulation of IL-1 and TNFα remain primary targets for treatment of arthritis, and results of early clinical trials are promising. However, the results of long-term clinical trials will be required to support the value of anti-cytokine therapy in treatment of arthritis

    Catalysis by Dehydroepiandrosterone Sulfotransferase

    Get PDF
    ABSTRACT: Cholestero

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div

    Cholesterol and oxysterol sulfates:Pathophysiological roles and analytical challenges

    Get PDF
    Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases

    The contribution of inherited genotype to breast cancer

    Get PDF
    The etiology of breast cancer is complex, and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. These inherited genotypes include those that affect the propensity to be exposed to breast carcinogens, and those associated with breast tumorigenesis directly. In addition, inherited genotypes may influence response to breast cancer chemoprevention and treatment. Studies relating inherited genotypes with breast cancer incidence and mortality should consider a broader spectrum of genes and their potential roles in multistage carcinogenesis than have been typically evaluated to date. Understanding the role of inherited genotype at different stages of carcinogenesis could improve our understanding of cancer biology, may identify specific exposures or events that correlate with carcinogenesis, or target relevant biochemical pathways for the development of preventive or therapeutic interventions

    Rat models of acute inflammation: a randomized controlled study on the effects of homeopathic remedies

    Get PDF
    BACKGROUND: One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal) studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties. The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema), using two treatment administration routes (sub-plantar injection and oral administration). METHODS: In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement) procedure. In a second phase, some of the remedies (in the same and in different dilutions) were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement) and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170–180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30), saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. RESULTS: In the first phase of experiments, some statistically significant effects of homeopathic remedies (Apis, Lachesis and Phosporus) were observed (the reduction in paw volume increase ranging from 10% to 28% at different times since edema induction). In the second phase of experiments, the effects of homeopathic remedies were not confirmed. On the contrary, the unblinded standard allopathic drug indomethacin exhibited its anti-inflammatory effect in both experimental phases (the reduction in paw volume increase ranging from 14% to 40% in the first phase, and from 18% to 38% in the second phase of experiments). CONCLUSION: The discrepancies between single-blind and double-blind methods in animal pharmacological research are noteworthy and should be better investigated, also in non-homeopathic research

    Thiopurine Methyltransferase Predicts the Extent of Cytotoxicty and DNA Damage in Astroglial Cells after Thioguanine Exposure

    Get PDF
    Thiopurine methyltransferase (Tpmt) is the primary enzyme responsible for deactivating thiopurine drugs. Thiopurine drugs (i.e., thioguanine [TG], mercaptopurine, azathioprine) are commonly used for the treatment of cancer, organ transplant, and autoimmune disorders. Chronic thiopurine therapy has been linked to the development of brain cancer (most commonly astrocytomas), and Tpmt status has been associated with this risk. Therefore, we investigated whether the level of Tpmt protein activity could predict TG-associated cytotoxicity and DNA damage in astrocytic cells. We found that TG induced cytotoxicity in a dose-dependent manner in Tpmt+/+, Tpmt+/− and Tpmt−/− primary mouse astrocytes and that a low Tpmt phenotype predicted significantly higher sensitivity to TG than did a high Tpmt phenotype. We also found that TG exposure induced significantly more DNA damage in the form of single strand breaks (SSBs) and double strand breaks (DSBs) in primary astrocytes with low Tpmt versus high Tpmt. More interestingly, we found that Tpmt+/− astrocytes had the highest degree of cytotoxicity and genotoxicity (i.e., IC50, SSBs and DSBs) after TG exposure. We then used human glioma cell lines as model astroglial cells to represent high (T98) and low (A172) Tpmt expressers and found that A172 had the highest degree of cytoxicity and SSBs after TG exposure. When we over-expressed Tpmt in the A172 cell line, we found that TG IC50 was significantly higher and SSB's were significantly lower as compared to mock transfected cells. This study shows that low Tpmt can lead to greater sensitivity to thiopurine therapy in astroglial cells. When Tpmt deactivation at the germ-line is considered, this study also suggests that heterozygosity may be subject to the greatest genotoxic effects of thiopurine therapy

    The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-κB transcriptional activity in models of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-κB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-κB transcriptional activity but is devoid of conventional estrogenic activity. The activity of WAY-169916 was monitored in two models of arthritis, the HLA-B27 transgenic rat and the Lewis rat adjuvant-induced model, after daily oral administration. In both models, a near complete reversal in hindpaw scores was observed as well as marked improvements in the histological scores. In the Lewis rat adjuvant model, WAY-169916 markedly suppresses the adjuvant induction of three serum acute phase proteins: haptoglobin, α1-acid glycoprotein (α1-AGP), and C-reactive protein (CRP). Gene expression experiments also demonstrate a global suppression of adjuvant-induced gene expression in the spleen, liver, and popliteal lymph nodes. Finally, WAY-169916 was effective in suppressing tumor necrosis factor-α-mediated inflammatory gene expression in fibroblast-like synoviocytes isolated from patients with RA. Together, these data suggest the utility of WAY-169916, and other compounds in its class, in treating RA through global suppression of inflammation via selective blockade of NF-κB transcriptional activity
    corecore