2,007 research outputs found

    A rapid method for measuring ATP + ADP + AMP in marine sediment

    Get PDF
    In this report, I describe a method for rapid measurement of total adenylate (ATP + ADP + AMP) in marine sediment samples for estimating microbial biomass. A simple ‘boil and dilute’ method is described here, whereby adding boiled MilliQ water to sediments increases the detection limit for ATP + ADP + AMP up to 100-fold. The lowered detection limit of this method enabled the detection ATP + ADP + AMP in relatively low-biomass sub-seafloor sediment cores with 104 16S rRNA gene copies per gram. Concentrations of ATP + ADP + AMP correlated with 16S rRNA gene concentrations from bacteria and archaea across six different sites that range in water depth from 1 to 6000 m indicating that the ATP + ADP + AMP method can be used as an additional biomass proxy. In deep sea microbial communities, the ratio of ATP + ADP + AMP concentrations to 16S rRNA genes >1 m below seafloor was significantly lower compared to communities in the upper 30 cm of sediment, which may be due to reduced cell sizes and or lower ATP + ADP + AMP concentrations per cell in the deep sea sub-seafloor biosphere. The boil and dilute method for ATP + ADP + AMP is demonstrated here to have a detection limit sufficient for measuring low biomass communities from deep sea sub-seafloor cores. The method can be applied to frozen samples, enabling measurements of ATP + ADP + AMP from frozen sediment cores stored in core repositories from past and future international drilling campaigns

    Direct measurement of DNA-mediated adhesion between lipid bilayers

    Full text link
    Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates. Lately, analogous artificial materials have been synthesised by functionalising the outer surface of compliant Brownian units, for example emulsion droplets and lipid vesicles, with selective linkers, in particular short DNA sequences. This development extended the range of applicability of DNA as a selective glue, originally applied to solid nano and colloidal particles. On very deformable lipid vesicles, the coupling between statistical effects of multivalent interactions and mechanical deformation of the membranes gives rise to complex emergent behaviours, as we recently contributed to demonstrate [Parolini et al., Nature Communications, 2015, 6, 5948]. Several aspects of the complex phenomenology observed in these systems still lack a quantitative experimental characterisation and fundamental understanding. Here we focus on the DNA-mediated multivalent interactions of a single liposome adhering to a flat supported bilayer. This simplified geometry enables the estimate of the membrane tension induced by the DNA-mediated adhesive forces acting on the liposome. Our experimental investigation is completed by morphological measurements and the characterisation of the DNA-melting transition, probed by in-situ F\"{o}rster Resonant Energy Transfer spectroscopy. Experimental results are compared with the predictions of an analytical theory that couples the deformation of the vesicle to a full description of the statistical mechanics of mobile linkers. With at most one fitting parameter, our theory is capable of semi-quantitatively matching experimental data, confirming the quality of the underlying assumptions.Comment: 16 pages, 7 figure

    Photon creation in a spherical oscillating cavity

    Get PDF
    We study the photon creation inside a perfectly conducting, spherical oscillating cavity. The electromagnetic field inside the cavity is described by means of two scalar fields which satisfy Dirichlet and (generalized) Neumann boundary conditions. As a preliminary step, we analyze the dynamical Casimir effect for both scalar fields. We then consider the full electromagnetic case. The conservation of angular momentum of the electromagnetic field is also discussed, showing that photons inside the cavity are created in singlet states.Comment: 14 pages, no figure

    Exploring the Abundance, Metabolic Potential, and Gene Expression of Subseafloor Chloroflexi in Million-year-old Oxic and Anoxic Abyssal Clay

    Get PDF
    Chloroflexi are widespread in subsurface environments, and recent studies indicate that they represent a major fraction of the communities in subseafloor sediment. Here, we compare the abundance, diversity, metabolic potential, and gene expression of Chloroflexi from three abyssal sediment cores from the western North Atlantic Gyre (water depth \u3e5400 m) covering up to 15 million years of sediment deposition, where Chloroflexi were found to represent major components of the community at all sites. Chloroflexi communities die off in oxic red clay over 10 to 15 million years, and gene expression was below detection. In contrast, Chloroflexi abundance and gene expression at the anoxic abyssal clay site increase below the seafloor and peak in 2 to 3 million-year-old sediment, indicating a comparably higher activity. Metatranscriptomes from the anoxic site reveal increased expression of Chloroflexi genes involved in cell wall biogenesis, protein turnover, inorganic ion transport, defense mechanisms and prophages. Phylogenetic analysis shows that these Chloroflexi are closely related to homoacetogenic subseafloor clades and actively transcribe genes involved in sugar fermentations, gluconeogenesis and Wood-Ljungdahl pathway in the subseafloor. Concomitant expression of cell division genes indicates that these putative homoacetogenic Chloroflexi are actively growing in these million-year-old anoxic abyssal sediments

    Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal (2019), doi:10.1038/s41396-019-0373-4.The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of “microbial dark matter”, validating hypotheses put forth by earlier metagenomic studies.This work was supported by a grant OR 417/1-1 from the Deutsche Forschungsgemeinschaft, and a Junior Researcher Fund grant from LMU Munich to WDO. This work was performed in part, through the Master’s Program in Geobiology and Paleontology (MGAP) at LMU Munich

    A method to localize gamma-ray bursts using POLAR

    Full text link
    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the chi2 obtained in the comparison between the measured scaler pattern and the database. This GRB localization technique brings enough accuracy so that the error transmitted to the 100% modulation factor is kept below 10% for GRBs with fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will be useful for those cases where no other instruments are simultaneously observing the same field of view.Comment: 13 pages, 10 figure
    corecore