518 research outputs found

    Analysis of Quiet-Sun Internetwork Magnetic Fields Based on Linear Polarization Signals

    Full text link
    We present results from the analysis of Fe I 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2{\times}10-3 and 3{\times}10-4 are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne-Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork fields are weak and very inclined, at least in about one quarter of the area occupied by the internetwork. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm-2 and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The internetwork fields do not follow an isotropic distribution of orientations.Comment: To appear in APJ, Vol 749, 201

    Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density

    Full text link
    We have performed power spectral analysis of surface temperatures, velocities, and magnetic fields, using spectro-polarimetric data taken with the Hinode Solar Optical Telescope. When we make power spectra in a field-of-view covering the super-granular scale, kinetic and thermal power spectra have a prominent peak at the granular scale while the magnetic power spectra have a broadly distributed power over various spatial scales with weak peaks at both the granular and supergranular scales. To study the power spectra separately in internetwork and network regions, power spectra are derived in small sub-regions extracted from the field-of-view. We examine slopes of the power spectra using power-law indices, and compare them with the unsigned magnetic flux density averaged in the sub-regions. The thermal and kinetic spectra are steeper than the magnetic ones at the sub-granular scale in the internetwork regions, and the power-law indices differ by about 2. The power-law indices of the magnetic power spectra are close to or smaller than -1 at that scale, which suggests the total magnetic energy mainly comes from either the granular scale magnetic structures or both the granular scale and smaller ones contributing evenly. The slopes of the thermal and kinetic power spectra become less steep with increasing unsigned flux density in the network regions. The power-law indices of all the thermal, kinetic, and magnetic power spectra become similar when the unsigned flux density is larger than 200 Mx cm^-2.Comment: 9 pages, 6 figures, accepted for publication in Ap

    On Fabry P\'erot Etalon based Instruments. I. The Isotropic Case

    Full text link
    Here we assess the spectral and imaging properties of Fabry P\'erot etalons when located in solar magnetographs. We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases, we focus on the effects caused by the polychromatic illumination of the filter by the irregularities in the optical thickness of the etalon and by deviations from the ideal illumination in both setups. We first review the general properties of Fabry P\'erots and we then address the different sources of degradation of the spectral transmission profile. We review and extend the general treatment of defects followed by different authors. We discuss the differences between the point spread functions (PSFs) of the collimated and telecentric configurations for both monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to collimated mounts is shown to have a better performance, although it varies from point to point due to an apodization of the image inherent to this configuration. This is in contrast to the (perfect) telecentric case, where the PSF remains constant but produces artificial velocities and magnetic field signals because of its strong spectral dependence. We find that the unavoidable presence of imperfections in the telecentrism produces a decrease of flux of photons and a shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field of view, thus compromising their advantages over the collimated configuration. We evaluate these effects for different apertures of the incident beam.Comment: 20 pages 22 figures 2 Appendice

    Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements

    Full text link
    Observations of the Sun from the Earth are always limited by the presence of the atmosphere, which strongly disturbs the images. A solution to this problem is to place the telescopes in space satellites, which produce observations without any (or limited) atmospheric aberrations. However, even though the images from space are not affected by atmospheric seeing, the optical properties of the instruments still limit the observations. In the case of diffraction limited observations, the PSF establishes the maximum allowed spatial resolution, defined as the distance between two nearby structures that can be properly distinguished. In addition, the shape of the PSF induce a dispersion of the light from different parts of the image, leading to what is commonly termed as stray light or dispersed light. This effect produces that light observed in a spatial location at the focal plane is a combination of the light emitted in the object at relatively distant spatial locations. We aim to correct the effect produced by the telescope's PSF using a deconvolution method, and we decided to apply the code on Hinode/SP quiet Sun observations. We analyze the validity of the deconvolution process with noisy data and we infer the physical properties of quiet Sun magnetic elements after the deconvolution process.Comment: 14 pages, 9 figure
    • …
    corecore