4,095 research outputs found

    Unravelling the complex magnetic structure of multiferroic pyroxene NaFeGe2O6: A combined experimental and theoretical study

    Full text link
    Magnetic order and the underlying magnetic model of the multiferroic pyroxene NaFeGe2O6 are systematically investigated by neutron powder diffraction, thermodynamic measurements, density-functional bandstructure calculations, and Monte-Carlo simulations. Upon cooling, NaFeGe2O6 first reveals one-dimensional spin-spin correlations in the paramagnetic state below about 50 K, revealed by magnetic diffuse scattering. The sinusoidal spin-density wave with spins along the a-direction sets in at 13 K, followed by the cycloidal configuration with spins lying in the (ac) plane below 11.6 K. Microscopically, the strongest magnetic coupling runs along the structural chains, J1 ' 12 K, which is likely related to the one-dimensional spin-spin correlations. The interchain couplings J2 ' 3:8K and J3 ' 2:1K are energetically well balanced and compete, thus giving rise to the incommensurate order in sharp contrast to other transition-metal pyroxenes, where one type of the interchain couplings prevails. The magnetic model of NaFeGe2O6 is further completed by the weak single-ion anisotropy along the a-direction. Our results resolve the earlier controversies regarding the magnetic order in NaFeGe2O6 and establish relevant symmetries of the magnetic structures. These results, combined with symmetry analysis, enable us to identify the possible mechanisms of the magnetoelectric coupling in this compound. We also elucidate microscopic conditions for the formation of incommensurate magnetic order in pyroxenes.Comment: 10 pages 10 figures, PRB(accepted

    Turbulence and secondary motions in square duct flow

    Full text link
    We study turbulent flows in pressure-driven ducts with square cross-section through direct numerical simulation in a wide enough range of Reynolds number to reach flow conditions which are representative of fully developed turbulence. Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient

    Nodular lymphocyte predominant Hodgkin lymphoma behaves as a distinct clinical entity with good outcome: evidence from 14-year followup in the West of Scotland Cancer Network

    Get PDF
    Clinically and biologically, nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) has much more in common with germinal-center derived B-cell non-Hodgkin lymphoma (NHL) than with classical Hodgkin lymphoma (cHL). Management of NLPHL remains controversial. In a 14-year multicenter series, 69 cases were analyzed, and the median follow-up was 53 months (range 11–165.) B-symptoms were present in only 4.3% of patients, and 81.1% of patients had stage I/II disease. Treatment was with radiotherapy (53.6%), chemotherapy (21.7%), combined modality (17.4%), and observation (7.2%). In all, 10.1% of patients relapsed and 2.9% of patients developed high-grade transformation to DLBCL. All relapses and transformations were salvageable. No patient died of their disease. The 5-year relapse-free survival was 92%, transformation-free survival 98.4%, and overall survival 100%. We conclude that NLPHL behaves as a distinct clinical entity, often presenting at an early stage without risk factors. It has an excellent outcome. It may be possible, in early-stage disease, to reduce the intensity of therapy in NLPHL, to single-modality radiotherapy, without affecting OS

    Typical Gibbs configurations for the 1d Random Field Ising Model with long range interaction

    Full text link
    We study a one--dimensional Ising spin systems with ferromagnetic, long--range interaction decaying as n^{-2+\a}, \a \in [0,\frac 12], in the presence of external random fields. We assume that the random fields are given by a collection of symmetric, independent, identically distributed real random variables, gaussian or subgaussian with variance θ\theta. We show that for temperature and variance of the randomness small enough, with an overwhelming probability with respect to the random fields, the typical configurations, within volumes centered at the origin whose size grow faster than any power of th1\th^{-1}, % {\bf around the origin} are intervals of ++ spins followed by intervals of - spins whose typical length is \simeq \th^{-\frac{2}{(1-2\a)}} for 0\le \a<1/2 and e1th2\simeq e^{\frac 1 {\th^{2}}} for \a=1/2

    Phase Transition in the 1d Random Field ising model with long range interaction

    Full text link
    We study the one dimensional Ising model with ferromagnetic, long range interaction which decays as |i-j|^{-2+a}, 1/2< a<1, in the presence of an external random filed. we assume that the random field is given by a collection of independent identically distributed random variables, subgaussian with mean zero. We show that for temperature and strength of the randomness (variance) small enough with P=1 with respect to the distribution of the random fields there are at least two distinct extremal Gibbs measures

    A 1 m3^3 Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment

    Full text link
    The aim of the CYGNO project is the construction and operation of a 1~m3^3 gas TPC for directional dark matter searches and coherent neutrino scattering measurements, as a prototype toward the 100-1000~m3^3 (0.15-1.5 tons) CYGNUS network of underground experiments. In such a TPC, electrons produced by dark-matter- or neutrino-induced nuclear recoils will drift toward and will be multiplied by a three-layer GEM structure, and the light produced in the avalanche processes will be readout by a sCMOS camera, providing a 2D image of the event with a resolution of a few hundred micrometers. Photomultipliers will also provide a simultaneous fast readout of the time profile of the light production, giving information about the third coordinate and hence allowing a 3D reconstruction of the event, from which the direction of the nuclear recoil and consequently the direction of the incoming particle can be inferred. Such a detailed reconstruction of the event topology will also allow a pure and efficient signal to background discrimination. These two features are the key to reach and overcome the solar neutrino background that will ultimately limit non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018 IEEE NSS/MI

    Lattice gas model in random medium and open boundaries: hydrodynamic and relaxation to the steady state

    Full text link
    We consider a lattice gas interacting by the exclusion rule in the presence of a random field given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different densities. We show, in dimensions d3d \ge 3, that the rescaled empirical density field almost surely, with respect to the random field, converges to the unique weak solution of a non linear parabolic equation having the diffusion matrix determined by the statistical properties of the external random field and boundary conditions determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the stationary regime, almost surely with respect to the random field, converges to the solution of the associated stationary transport equation

    The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    Get PDF
    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.Comment: 7 pages, 2 figures, LTD16 conference proceedin
    corecore