6,170 research outputs found

    Radiation Damage and Recovery Properties of Common Plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) Using a 137Cs Gamma Ray Source Up To 1 MRad and 10 MRad

    Full text link
    Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap and common polyester plastics used throughout the world in the manufacturing of bottled drinks, containers for foodstuffs, and fibers used in clothing. These plastics are also known organic scintillators with very good scintillation properties. As particle physics experiments increase in energy and particle flux density, so does radiation exposure to detector materials. It is therefore important that scintillators be tested for radiation tolerance at these generally unheard of doses. We tested samples of PEN and PET using laser stimulated emission on separate tiles exposed to 1 MRad and 10 MRad gamma rays with a 137Cs source. PEN exposed to 1 MRad and 10 MRad emit 71.4% and 46.7% of the light of an undamaged tile, respectively, and maximally recover to 85.9% and 79.5% after 5 and 9 days, respectively. PET exposed to 1 MRad and 10 MRad emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and 80.0% after 22 and 60 days, respectively

    Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry

    Full text link
    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in a Secondary Emission (SE) Ionization Calorimetry study. SE Ionization Calorimetry is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The different operation modes used in these tests were developed by modifying the conventional PMT bias circuit. These modifications were simple changes to the arrangement of the voltage dividers of the baseboard circuits. The PMTs with modified bases, referred to as operating in SE mode, are used as an SE detector module in an SE calorimeter prototype, and placed between absorber materials (Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes, as well as the characterization measurements of both SE modes and the conventional PMT mode are reported

    Status of Zero Degree Calorimeter for CMS Experiment

    Get PDF
    The Zero Degree Calorimeter (ZDC) is integral part of the CMS experiment, especially, for heavy ion studies. The design of the ZDC includes two independent calorimeter sections: an electromagnetic section and a hadronic section. Sampling calorimeters using tungsten and quartz fibers have been chosen for the energy measurements. An overview of the ZDC is presented along with a current status of calorimeter's preparation for Day 1 of LHC.Comment: 8 pages, 5 figures, 1 table, to appear in the proceedings of CALOR06, June 5-9, 2006 Chicago, US

    Physics at Very Small Angles with CASTOR at CMS

    Get PDF
    CASTOR is a small (56 cm diameter) quartz-tungsten Cerenkov calorimeter covering the small angles 0.2-0.6 deg (5.2<="eta"<=6.4) in CMS, a major experiment at the LHC. Particularly with heavy-ion reactions a substantial fraction of the total reaction energy goes into this large "eta" region. CASTOR will function as a part of CMS and also as an independent detector to search for special types of events in the far-forward region. It is divided into 16 azimuthal sectors, each with 18 longitudinal segments to allow identification of particles by their energy-loss profiles. The most forward segments are smaller to better characterize electromagnetic events

    An instrument to measure fast gas phase radical kinetics at hight temperatures and pressures

    Get PDF
    Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument is reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25,000 s-1) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ~ 900 K and ~ 5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry

    Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O2: Experimental and Theoretical Investigations of QOOH Radicals Derived from Cl + (CH3)3COOH

    Get PDF
    QOOH radicals are key species in autoignition, produced by internal isomerisations of RO2 radicals, and are central to chain branching reactions in low temperature combustion. The kinetics of QOOH radical decomposition and reaction with O2 have been determined as a function of temperature and pressure, using observations of OH radical production and decay following H-atom abstraction from tertiary-butyl hydroperoxide ((CH3)3COOH) by Cl atoms to produce QOOH (.CH2(CH3)2COOH) radicals. The kinetics of QOOH decomposition have been investigated as a function of temperature (251 to 298 K), and pressure (10 to 350 Torr), in helium and nitrogen bath gases, and those of the reaction between QOOH and O2 have been investigated as a function of temperature (251 to 304 K), and pressure (10 to 100 Torr) in He and N2. Decomposition of the QOOH radicals was observed to display temperature and pressure dependence, with a barrier height for decomposition of (44.7 ± 4.0) kJ mol-1 determined by master equation fitting to the experimental data. The rate coefficient for the reaction between QOOH and O2 was determined to be (5.6 ± 1.7) × 10-13 cm3 s-1 at 298 K, with no significant dependence on pressure, and can be described by the Arrhenius parameters A = (7.3 ± 6.8) × 10-14 cm3 s-1 and Ea = -(5.4 ± 2.1) kJ mol-1 in the temperature range 251 to 304 K. This work represents the first measurements of any QOOH radical kinetics as a function of temperature and pressure

    A new method for atmospheric detection of the CH3O2 radical

    Get PDF
    A new method for measurement of the methyl peroxy (CH3O2) radical has been developed using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE) with laser excitation at ca. 298 nm. The method can also directly detect CH3O, when no nitric oxide is added. Laboratory calibrations were performed to characterise the FAGE instrument sensitivity using the conventional radical source employed in OH calibration with conversion of a known concentration of OH into CH3O2 via reaction with CH4 in the presence of O2. Detection limits of 3.8 × 108 and 3.0 × 108 molecule cm−3 were determined for CH3O2 and CH3O respectively for a signal-to-noise ratio of 2 and 5 min averaging time. Averaging over 1 h reduces the detection limit for CH3O2 to 1.1 × 108 molecule cm−3, which is comparable to atmospheric concentrations. The kinetics of the second-order decay of CH3O2 via its self-reaction were observed in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) at 295 K and 1 bar and used as an alternative method of calibration to obtain a calibration constant with overlapping error limits at the 1σ level with the result of the conventional method of calibration. The overall uncertainties of the two methods of calibrations are similar – 15 % for the kinetic method and 17 % for the conventional method – and are discussed in detail. The capability to quantitatively measure CH3O in chamber experiments is demonstrated via observation in HIRAC of CH3O formed as a product of the CH3O2 self-reaction

    Massive Wireless Energy Transfer with Multiple Power Beacons for very large Internet of Things

    Get PDF
    The Internet of Things (IoT) comprises an increasing number of low-power and low-cost devices that autonomously interact with the surrounding environment. As a consequence of their popularity, future IoT deployments will be massive, which demands energy-efficient systems to extend their lifetime and improve the user experience. Radio frequency wireless energy transfer has the potential of powering massive IoT networks, thus eliminating the need for frequent battery replacement by using the so-called power beacons (PBs). In this paper, we provide a framework for minimizing the sum transmit power of the PBs using devices' positions information and their current battery state. Our strategy aims to reduce the PBs' power consumption and to mitigate the possible impact of the electromagnetic radiation on human health. We also present analytical insights for the case of very distant clusters and evaluate their applicability. Numerical results show that our proposed framework reduces the outage probability as the number of PBs and/or the energy demands increase.Comment: 7 pages, 6 figures, Submitted to "The International Workshop on Very Large Internet of Things (2021)
    • …
    corecore