50 research outputs found

    Post-translational insertion of boron in proteins to probe and modulate function

    Get PDF
    Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cβ–Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid–base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand–host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cβ–Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive ‘mutation’

    Post-translational insertion of boron in proteins to probe and modulate function

    Get PDF
    Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cβ–Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid–base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand–host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cβ–Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive ‘mutation’

    A novel BACE inhibitor NB-360 shows a superior pharmacological profile and robust reduction of amyloid-β and neuroinflammation in APP transgenic mice

    Get PDF
    BACKGROUND: Alzheimer’s disease (AD) is the most common form of dementia, the number of affected individuals is rising, with significant impacts for healthcare systems. Current symptomatic treatments delay, but do not halt, disease progression. Genetic evidence points to aggregation and deposition of amyloid-β (Aβ) in the brain being causal for the neurodegeneration and dementia typical of AD. Approaches to target Aβ via inhibition of γ-secretase or passive antibody therapy have not yet resulted in substantial clinical benefits. Inhibition of BACE1 (β-secretase) has proven a challenging concept, but recent BACE1inhibitors can enter the brain sufficiently well to lower Aβ. However, failures with the first clinical BACE1 inhibitors have highlighted the need to generate compounds with appropriate efficacy and safety profiles, since long treatment periods are expected to be necessary in humans. RESULTS: Treatment with NB-360, a potent and brain penetrable BACE-1 inhibitor can completely block the progression of Aβ deposition in the brains of APP transgenic mice, a model for amyloid pathology. We furthermore show that almost complete reduction of Aβ was achieved also in rats and in dogs, suggesting that these findings are translational across species and can be extrapolated to humans. Amyloid pathology may be an initial step in a complex pathological cascade; therefore we investigated the effect of BACE-1 inhibition on neuroinflammation, a prominent downstream feature of the disease. NB-360 stopped accumulation of activated inflammatory cells in the brains of APP transgenic mice. Upon chronic treatment of APP transgenic mice, patches of grey hairs appeared. CONCLUSIONS: In a rapidly developing field, the data on NB-360 broaden the chemical space and expand knowledge on the properties that are needed to make a BACE-1 inhibitor potent and safe enough for long-term use in patients. Due to its excellent brain penetration, reasonable oral doses of NB-360 were sufficient to completely block amyloid-β deposition in an APP transgenic mouse model. Data across species suggest similar treatment effects can possibly be achieved in humans. The reduced neuroinflammation upon amyloid reduction by NB-360 treatment supports the notion that targeting amyloid-β pathology can have beneficial downstream effects on the progression of Alzheimer’s disease

    Bench-stable transfer reagent facilitates the generation of trifluoromethyl-sulfonimidamides

    No full text
    Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF3-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF3-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications

    Bench-stable transfer reagent facilitates the generation of trifluoromethyl-sulfonimidamides

    No full text
    Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF3-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF3-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications

    Bench-stable transfer reagent facilitates the generation of trifluoromethyl-sulfonimidamides

    Get PDF
    Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF3-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF3-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications

    Hydrochlorofluoromethylation of unactivated alkenes with chlorofluoroacetic acid

    No full text
    An operationally simple method enabling hydrochlorofluoromethylation of unactivated alkenes under visible light activation is reported. The procedure has various benefits. It uses commercially available and inexpensive chlorofluoroacetic acid and phenyliodine(III) diacetate for the generation of the required chlorofluoromethyl radical, it converts feedstock olefins into attractive 1-chloro-1-fluoroalkanes, and it tolerates a broad variety of functional groups. The chlorofluoromethyl radical has a reactivity profile towards alkenes similar to the nucleophilic difluoromethyl radical

    Reductive site-selective atypical C,Z-type/N2-C2 cleavage allows C-terminal protein amidation

    No full text
    Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2)
    corecore