736 research outputs found
Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations
We report results on rotating stratified turbulence in the absence of
forcing, with large-scale isotropic initial conditions, using direct numerical
simulations computed on grids of up to 4096^3 points. The Reynolds and Froude
numbers are respectively equal to Re=5.4 x 10^4 and Fr=0.0242. The ratio of the
Brunt-V\"ais\"al\"a to the inertial wave frequency, N/f, is taken to be equal
to 4.95, a choice appropriate to model the dynamics of the southern abyssal
ocean at mid latitudes. This gives a global buoyancy Reynolds number
R_B=ReFr^2=32, a value sufficient for some isotropy to be recovered in the
small scales beyond the Ozmidov scale, but still moderate enough that the
intermediate scales where waves are prevalent are well resolved. We concentrate
on the large-scale dynamics, for which we find a spectrum compatible with the
Bolgiano-Obukhov scaling, and confirm that the Froude number based on a typical
vertical length scale is of order unity, with strong gradients in the vertical.
Two characteristic scales emerge from this computation, and are identified from
sharp variations in the spectral distribution of either total energy or
helicity. A spectral break is also observed at a scale at which the partition
of energy between the kinetic and potential modes changes abruptly, and beyond
which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous
in the flow in the velocity and temperature fields, with local overturning
events indicated by small Richardson numbers, and a small large-scale
enhancement of energy directly attributable to the effect of rotation is also
observed.Comment: 19 pages, 9 figures (including compound figures
On closed rotating worlds
A new solution for the stationary closed world with rigid rotation is
obtained for the spinning fluid source. It is found that the spin and vorticity
are locally balanced. This model qualitatively shows that the local rotation of
the cosmological matter can be indeed related to the global cosmic vorticity,
provided the total angular momentum of the closed world is vanishing.Comment: 10 pages, Revtex, to appear in Phys. Rev. D6
Electrovac -waves
New exact solutions of the Einstein-Maxwell field equations that describe
-waves are presented
Fractal dimension crossovers in turbulent passive scalar signals
The fractal dimension of turbulent passive scalar signals is
calculated from the fluid dynamical equation. depends on the
scale. For small Prandtl (or Schmidt) number one gets two ranges,
for small scale r and =5/3 for large r, both
as expected. But for large one gets a third, intermediate range in
which the signal is extremely wrinkled and has . In that
range the passive scalar structure function has a plateau. We
calculate the -dependence of the crossovers. Comparison with a numerical
reduced wave vector set calculation gives good agreement with our predictions.Comment: 7 pages, Revtex, 3 figures (postscript file on request
A stochastic model of cascades in 2D turbulence
The dual cascade of energy and enstrophy in 2D turbulence cannot easily be
understood in terms of an analog to the Richardson-Kolmogorov scenario
describing the energy cascade in 3D turbulence. The coherent up- and downscale
fluxes points to non-locality of interactions in spectral space, and thus the
specific spatial structure of the flow could be important. Shell models, which
lack spacial structure and have only local interactions in spectral space,
indeed fail in reproducing the correct scaling for the inverse cascade of
energy. In order to exclude the possibility that non-locality of interactions
in spectral space is crucial for the dual cascade, we introduce a stochastic
spectral model of the cascades which is local in spectral space and which shows
the correct scaling for both the direct enstrophy - and the inverse energy
cascade.Comment: 4 pages, 3 figure
Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter
We investigate the scale-locality of subgrid-scale (SGS) energy flux and
inter-band energy transfers defined by the sharp spectral filter. We show by
rigorous bounds, physical arguments and numerical simulations that the spectral
SGS flux is dominated by local triadic interactions in an extended turbulent
inertial-range. Inter-band energy transfers are also shown to be dominated by
local triads if the spectral bands have constant width on a logarithmic scale.
We disprove in particular an alternative picture of ``local transfer by
nonlocal triads,'' with the advecting wavenumber mode at the energy peak.
Although such triads have the largest transfer rates of all {\it individual}
wavenumber triads, we show rigorously that, due to their restricted number,
they make an asymptotically negligible contribution to energy flux and
log-banded energy transfers at high wavenumbers in the inertial-range. We show
that it is only the aggregate effect of a geometrically increasing number of
local wavenumber triads which can sustain an energy cascade to small scales.
Furthermore, non-local triads are argued to contribute even less to the
space-average energy flux than is implied by our rigorous bounds, because of
additional cancellations from scale-decorrelation effects. We can thus recover
the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by
Kraichnan's ALHDIA and TFM closures. We support our results with numerical data
from a pseudospectral simulation of isotropic turbulence with
phase-shift dealiasing. We conclude that the sharp spectral filter has a firm
theoretical basis for use in large-eddy simulation (LES) modeling of turbulent
flows.Comment: 42 pages, 9 figure
A generalized photon propagator
A covariant gauge independent derivation of the generalized dispersion
relation of electromagnetic waves in a medium with local and linear
constitutive law is presented. A generalized photon propagator is derived. For
Maxwell constitutive tensor, the standard light cone structure and the standard
Feynman propagator are reinstated
Particle and particle pair dispersion in turbulence modeled with spatially and temporally correlated stochastic processes
In this paper we present a new model for modeling the diffusion and relative
dispersion of particles in homogeneous isotropic turbulence. We use an
Heisenberg-like Hamiltonian to incorporate spatial correlations between fluid
particles, which are modeled by stochastic processes correlated in time. We are
able to reproduce the ballistic regime in the mean squared displacement of
single particles and the transition to a normal diffusion regime for long
times. For the dispersion of particle pairs we find a -dependence of the
mean squared separation at short times and a -dependence for long ones. For
intermediate times indications for a Richardson law are observed in
certain situations. Finally the influence of inertia of real particles on the
dispersion is investigated.Comment: 10 pages, 7 figures, 1 tabl
Localized ferromagnetic resonance force microscopy in permalloy-cobalt films
We report Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a
justaposed continuous films of permalloy and cobalt. Our studies demonstrate
the capability of FMRFM to perform local spectroscopy of different
ferromagnetic materials. Theoretical analysis of the uniform resonance mode
near the edge of the film agrees quantitatively with experimental data. Our
experiments demonstrate the micron scale lateral resolution in determining
local magnetic properties in continuous ferromagnetic samples.Comment: 7 pages, 3 figure
Reply to the comment by D. Kreimer and E. Mielke
We respond to the comment by Kreimer et. al. about the torsional contribution
to the chiral anomaly in curved spacetimes. We discuss their claims and refute
its main conclusion.Comment: 9 pages, revte
- …