2,839 research outputs found

    Impact-Induced Melting of Near-Surface Water Ice on Mars

    Get PDF
    All fresh and many older Martian craters with diameters greater than a few km are surrounded by ejecta blankets which appear fluidized, with morphologies believed to form by entrainment of liquid water. We present cratering simulations investigating the outcome of 10 km s–1 impacts onto models of the Martian crust, a mixture of basalt and ice at an average temperature of 200 K. Because of the strong impedance mismatch between basalt and ice, the peak shock pressure and the pressure decay profiles are sensitive to the mixture composition of the surface. For typical impact events, about 50% of the excavated ground ice is melted by the impact-induced shock. Pre-existing subsurface liquid water is not required to form observed fluidized ejecta morphologies, and the presence of rampart craters on different age terranes is a useful probe of ground ice on Mars over time

    Shock wave induced vaporization of porous solids

    Get PDF
    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s

    Evaluation of dental therapists undertaking dental examinations in a school setting in Scotland

    Get PDF
    Objective: To measure agreement between dental therapists and the Scottish gold-standard dentist undertaking National Dental Inspection Programme (NDIP) examinations. Methods: A study of interexaminer agreement between 19 dental therapists and the national gold-standard dentist was carried out. Pre-calibration training used the caries diagnostic criteria and examination techniques agreed by the British Association for the Study of Community Dentistry (BASCD). Twenty-three 5-year-old children (Primary 1) and 17 11-year-old children (Primary 7) children were examined. Agreement was assessed using kappa statistics on d 3 mft and D 3 MFT for P1 and P7 children, sensitivity and specificity values, and kappa statistics on d 3 t/D 3 T and ft/FT. Calibration data on P1 and P7 children from 2009–2012 involving dentists as examiners were used for comparison. Economic evaluation was undertaken using a cost minimization analysis approach. Results: The mean kappa score was 0.84 (SD 0.07) ranging from 0.69 to 0.94. All dental therapists scored good or very good agreement with the gold-standard dentist. This compares with historic NDIP calibration data with dentists, against the same gold-standard dentist, where the mean kappa value was 0.68 (SD 0.22) with a range of 0.35-1.00. The mean sensitivity score was 0.98 (SD 0.04) (range 0.88-1.0) and mean specificity score was 0.90 (SD 0.06) (range 0.78-0.96). Health economic analysis estimated that salary costs would be 33.6% lower if dental therapists were substituted for dentists in the year 2013, with an estimated saving of approximately £103 646 per annum on the national budget. Conclusion: We conclude that dental therapists show a high level of interexaminer agreement, and with the appropriate annual training and calibration, they could undertake dental examinations as part of the NDIP programme

    A. R. P. Walker Lecture - Food and the gut

    Get PDF
    No Abstract

    Complex craters: Relationship of stratigraphy and rings to impact conditions

    Get PDF
    One of the key issues associated with the understanding of large scale impacts is how the observable complex crater structural features (e.g., central peaks and pits, flat floors, ring shaped ridges and depressions, stratigraphic modifications, and faults) relate to the impactor's parameters (e.g., radius, velocity, and density) and the nonobservable transient crater measures (e.g., depth of penetration and diameter at maximum penetration). We have numerically modeled large-scale impacts on planets for a range of impactor parameters, gravity and planetary material strengths. From these we found that the collapse of the transient cavity results in the development of a tall, transient central peak that oscillates and drives surface waves that are arrested by the balance between gravitational forces and planetary strength to produce a wide range of the observed surface features. In addition, we found that the underlying stratigraphy is inverted outside of the transient cavity diameter (overturned flap region), but not inside. This change in stratigraphy is observable by remote sensing, drilling, seismic imaging and gravity mapping techniques. We used the above results to develop scaling laws and to make estimates of the impact parameters for the Chicxulub impact and also compared the calculated stratigraphic profile with the internal structure model developed by Hildebrand et. al. [1998], using gravity, seismic and other field data. For a stratigraphy rotation diameter of 90 km, the maximum depth of penetration is ∼43 km. The impactor diameter was also calculated. From the scaling relationships we get for a 2.7 g/cm^3 asteroid impacting at 20 km/s, or a 1.0 g/cm^3 comet impacting at 40 km/s, an impactor diameter of ∼13 km, and for a comet impacting at 60 km/s, an impactor diameter of ∼10 km

    Impact cratering: The effect of crustal strength and planetary gravity

    Get PDF
    Upon impact of a meteorite with a planetary surface the resulting shock wave both ‘processes’ the material in the vicinity of the impact and sets a larger volume of material than was subjected to high pressure into motion. Most of the volume which is excavated by the impact leaves the crater after the shock wave has decayed. The kinetic energy which has been deposited in the planetary surface is converted into reversible and irreversible work, carried out against the planetary gravity field and against the strength of the impacted material, respectively. By using the results of compressible flow calculations prescribing the initial stages of the impact interaction (obtained with finite difference techniques) the final stages of cratering flow along the symmetry axis are described, using the incompressible flow formalism proposed by Maxwell. The fundamental assumption in this description is that the amplitude of the particle velocity field decreases with time as kinetic energy is converted into heat and gravitational potential energy. At a given time in a spherical coordinate system the radial velocity is proportional to R^(−z), where R is the radius (normalized by projectile velocity) and z is a constant shape factor for the duration of flow and a weak function of angle. The azimuthal velocity, as well as the streamlines, is prescribed by the incompressibility condition. The final crater depth (for fixed strength Y) is found to be proportional to R_0[2(z + 1)u_(or)²/g]^(1/(z+1)), where u_(or) is the initial radial particle velocity at (projectile normalized) radius R_0, g is planetary gravity, and z (which varied from 2 to 3) is the shape factor. The final crater depth (for fixed gravity) is also found to be proportional to [ρu_(or)^2/Yz]^(1/(z+1)), where ρ and Y are planetary density and yield strength, respectively. By using a Mohr-Coulomb yield criterion the effect of varying strength on transient crater depth and on crater formation time in the gravity field of the moon is investigated for 5-km/s impactors with radii in the 10- to 10^7-cm range. Comparison of crater formation time and maximum transient crater depth as a function of gravity yields dependencies proportional to g^(−0.58) and g^(−0.19), respectively, compared to g^(−0.618) and g^(−0.165) observed by Gault and Wedekind for hypervelocity impact craters in the 16- to 26-cm-diameter range in a quartz sand (with Mohr-Coulomb type behavior) carried out over an effective gravity range of 72–980 cm/s²

    Viability of an economy with constrained inequality in a two tax system

    No full text
    Motivated by Karacaoglu's treasury paper concerning the sustainability and equity of capital, as well as by Piketty's research suggesting that income inequality will increase if no action is taken to remedy it, we search for a way to reduce inequality while maintaining economic efficiency. Using a developed economic model with evolutions for debt, consumption, capital and relative factor share, which proxies inequality, we look at how tax rates on capital income and labour income can constrain all the quantities above within set bounds. We solve this problem through the mathematics of viability theory and use a program called VIKAASA to solve and display our results in terms of viability kernels. The results tell us that taxation, especially capital taxation, is a powerful tool for reducing inequality. While this taxation usually diminishes consumption and capital, we show that for some economic conditions, these decreases can be negligible. The kernels also tell us how a policy maker should react in a variety of economic situations, including high debt and high capital stocks

    Cometary and meteorite swarm impact on planetary surfaces

    Get PDF
    The velocity flow fields, energy partitioning, and ejecta distributions resulting from impact of porous (fragmented) icy cometary nuclei with silicate planetary surfaces at speeds from 5 to 45 km/s are different than those resulting from the impact of solid ice or silicate meteorites. The impact of 1 g/cm^3 ice spheres onto an atmosphereless anorthosite planetary surface induces cratering flows that appear similar to those induced by normal density anorthosite meteorite impact. Both of these impactors lead to deep transient crater cavities for final crater diameters less than ∼1 to ∼10 km and for escape velocities ≲10^5 cm/s. Moreover the fraction of internal energy partitioned into the planetary surface at the cratering site is 0.6 for both ice and anorthosite impactors at 15 km/s. As the assumed density of the hypothetical cometary nucleus or fragment cloud from a nucleus decreases to 0.01 g/cm^3, the fraction of the impact energy partitioned into planetary surface internal energy decreases to less than 0.01, and the flow field displays a toroidal behavior in which the apparent source of the flow appears to emanate from a disc or ringlike region rather than from a single point, as in the explosive cratering case. The edges of the crater region are in several cases depressed and flow downward, whereas the center of the crater region is uplifted. Moreover, the resultant postimpact particle velocity flow in some cases indicates the formation of concentric ridges, a central peak, and a distinct absence of a deep transient cavity. In contrast, transient cavities are a ubiquitous feature of nearly all previous hypervelocity impact calculations. The calculations of the flow fields for low density (0.01 g/cm^3) impactors exhibited surface interface (comet-planet) instabilities. These are attributed to both the Rayleigh-Taylor and Helmholtz instability conditions, and we believe that these occur in all flows involving volatile low-density (0.01 g/cm^3) projectiles. It is speculated that these hydrodynamic instabilities can give rise to concentric rings in the inner crater region in large-scale impacts on planetary surfaces, although other mechanisms for their production may also act. The ejecta mass loss versus planetary escape velocity was computed, and these results imply that the critical escape velocity, at which as much material is lost as is being accreted from a planet, ranges from 1.2 to 2.75 km/s for encounter speeds of 5 to 15 kms/s, with cometary impactors having a density of 0.01 to 1 g/cm^3. These values compare to 0.83 and 1.5 km/s for silicate impactors, thereby indicating that it is more difficult for volatiles than silicates to be accreted onto objects with escape velocities similar to the Moon, Mercury, and Mars. For objects with escape velocities in the 0.1 to 1 km/s range the accretional efficiency for silicate and various porosity ices are similar, whereas for objects with escape velocities <0.1 km/s the accretional efficiency of icy impactors becomes significantly lower than for silicate impactors

    Planetary Cratering Mechanics

    Get PDF
    The objective of this study was to obtain a quantitative understanding of the cratering process over a broad range of conditions. Our approach was to numerically compute the evolution of impact induced flow fields and calculate the time histories of the key measures of crater geometry (e.g. depth, diameter, lip height) for variations in planetary gravity (0 to 10^9 cm/s^2), material strength (0 to 2400 kbar), and impactor radius (0.05 to 5000 km). These results were used to establish the values of the open parameters in the scaling laws of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration, (2) inertial, (3) terminal and (4) relaxation. During the penetration regime, the depth of impactor penetration grows linearly for dimensionless times τ = (Ut/a) 5.1, the crater grows at a slower rate until it is arrested by either strength or gravitational forces. In this regime, the increase of crater depth, d, and diameter, D, normalized by projectile radius is given by d/a = 1.3 (Ut/a)^(0.36) and D/a = 2.0(Ut/a)^(0.36). For strength-dominated craters, growth stops at the end of the inertial regime, which occurs at τ = 0.33 (Y_(eff)/ρU^2)^(−0.78), where Y_(eff) is the effective planetary crustal strength. The effective strength can be reduced from the ambient strength by fracturing and shear band melting (e.g. formation of pseudo-tachylites). In gravity-dominated craters, growth stops when the gravitational forces dominate over the inertial forces, which occurs at τ = 0.92 (ga/U^2)^(−0.61). In the strength and gravity regimes, the maximum depth of penetration is d_p/a = 0.84 (Y/ρ U^2)^(−0.28) and d_p/a = 1.2 (ga/U^2)^(−0.22), respectively. The transition from simple bowl-shaped craters to complex-shaped craters occurs when gravity starts to dominate over strength in the cratering process. The diameter for this transition to occur is given by D_t = 9.0 Y/ρg, and thus scales as g^(−1) for planetary surfaces when strength is not strain-rate dependent. This scaling result agrees with crater-shape data for the terrestrial planets [Chapman and McKinnon, 1986]. We have related some of the calculable, but nonobservable parameters which are of interest (e.g. maximum depth of penetration, depth of excavation, and maximum crater lip height) to the crater diameter. For example, the maximum depth of penetration relative to the maximum crater diameter is 0.6, for strength dominated craters, and 0.28 for gravity dominated craters. These values imply that impactors associated with the large basin impacts penetrated relatively deeply into the planet's surface. This significantly contrasts to earlier hypotheses in which it had been erroneously inferred from structural data that the relative transient crater depth of penetration decreased with increasing diameter. Similarly, the ratio of the maximum depth of excavation relative to the final crater diameter is a constant ≃0.05, for gravity dominated craters, and ≃ 0.09 for strength dominated craters. This result implies that for impact velocities less than 25 km/s, where significant vaporization begins to take place, the excavated material comes from a maximum depth which is less than 0.1 times the crater diameter. In the gravity dominated regime, we find that the apparent final crater diameter is approximately twice the transient crater diameter and that the inner ring diameter is less than the transient crater diameter
    corecore