166 research outputs found

    Addressing Non-IID Problem in Federated Autonomous Driving with Contrastive Divergence Loss

    Full text link
    Federated learning has been widely applied in autonomous driving since it enables training a learning model among vehicles without sharing users' data. However, data from autonomous vehicles usually suffer from the non-independent-and-identically-distributed (non-IID) problem, which may cause negative effects on the convergence of the learning process. In this paper, we propose a new contrastive divergence loss to address the non-IID problem in autonomous driving by reducing the impact of divergence factors from transmitted models during the local learning process of each silo. We also analyze the effects of contrastive divergence in various autonomous driving scenarios, under multiple network infrastructures, and with different centralized/distributed learning schemes. Our intensive experiments on three datasets demonstrate that our proposed contrastive divergence loss further improves the performance over current state-of-the-art approaches

    Helix++: A platform for efficiently securing software

    Full text link
    The open-source Helix++ project improves the security posture of computing platforms by applying cutting-edge cybersecurity techniques to diversify and harden software automatically. A distinguishing feature of Helix++ is that it does not require source code or build artifacts; it operates directly on software in binary form--even stripped executables and libraries. This feature is key as rebuilding applications from source is a time-consuming and often frustrating process. Diversification breaks the software monoculture and makes attacks harder to execute as information needed for a successful attack will have changed unpredictably. Diversification also forces attackers to customize an attack for each target instead of attackers crafting an exploit that works reliably on all similarly configured targets. Hardening directly targets key attack classes. The combination of diversity and hardening provides defense-in-depth, as well as a moving target defense, to secure the Nation's cyber infrastructure.Comment: 4 pages, 1 figure, white pape

    Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    Get PDF
    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images

    Music-Driven Group Choreography

    Get PDF
    Music-driven choreography is a challenging problem with a wide variety of industrial applications. Recently, many methods have been proposed to synthesize dance motions from music for a single dancer. However, generating dance motion for a group remains an open problem. In this paper, we present AIOZ−GDANCE\rm AIOZ-GDANCE, a new large-scale dataset for music-driven group dance generation. Unlike existing datasets that only support single dance, our new dataset contains group dance videos, hence supporting the study of group choreography. We propose a semi-autonomous labeling method with humans in the loop to obtain the 3D ground truth for our dataset. The proposed dataset consists of 16.7 hours of paired music and 3D motion from in-the-wild videos, covering 7 dance styles and 16 music genres. We show that naively applying single dance generation technique to creating group dance motion may lead to unsatisfactory results, such as inconsistent movements and collisions between dancers. Based on our new dataset, we propose a new method that takes an input music sequence and a set of 3D positions of dancers to efficiently produce multiple group-coherent choreographies. We propose new evaluation metrics for measuring group dance quality and perform intensive experiments to demonstrate the effectiveness of our method. Our project facilitates future research on group dance generation and is available at: https://aioz-ai.github.io/AIOZ-GDANCE/Comment: accepted in CVPR 202

    Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing with Coverage-preserving Coverage-guided Tracing

    Full text link
    Coverage-guided fuzzing's aggressive, high-volume testing has helped reveal tens of thousands of software security flaws. While executing billions of test cases mandates fast code coverage tracing, the nature of binary-only targets leads to reduced tracing performance. A recent advancement in binary fuzzing performance is Coverage-guided Tracing (CGT), which brings orders-of-magnitude gains in throughput by restricting the expense of coverage tracing to only when new coverage is guaranteed. Unfortunately, CGT suits only a basic block coverage granularity -- yet most fuzzers require finer-grain coverage metrics: edge coverage and hit counts. It is this limitation which prohibits nearly all of today's state-of-the-art fuzzers from attaining the performance benefits of CGT. This paper tackles the challenges of adapting CGT to fuzzing's most ubiquitous coverage metrics. We introduce and implement a suite of enhancements that expand CGT's introspection to fuzzing's most common code coverage metrics, while maintaining its orders-of-magnitude speedup over conventional always-on coverage tracing. We evaluate their trade-offs with respect to fuzzing performance and effectiveness across 12 diverse real-world binaries (8 open- and 4 closed-source). On average, our coverage-preserving CGT attains near-identical speed to the present block-coverage-only CGT, UnTracer; and outperforms leading binary- and source-level coverage tracers QEMU, Dyninst, RetroWrite, and AFL-Clang by 2-24x, finding more bugs in less time.Comment: CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Securit

    Anxious/depressed symptoms are related to microstructural maturation of white matter in typically developing youths

    Get PDF
    AbstractThere are multiple recent reports of an association between anxious/depressed (A/D) symptomatology and the rate of cerebral cortical thickness maturation in typically developing youths. We investigated the degree to which anxious/depressed symptoms are tied to age-related microstructural changes in cerebral fiber pathways. The participants were part of the NIH MRI Study of Normal Brain Development. Child Behavior Checklist A/D scores and diffusion imaging were available for 175 youths (84 males, 91 females; 241 magnetic resonance imagings) at up to three visits. The participants ranged from 5.7 to 18.4 years of age at the time of the scan. Alignment of fractional anisotropy data was implemented using FSL/Tract-Based Spatial Statistics, and linear mixed model regression was carried out using SPSS. Child Behavior Checklist A/D was associated with the rate of microstructural development in several white matter pathways, including the bilateral anterior thalamic radiation, bilateral inferior longitudinal fasciculus, left superior longitudinal fasciculus, and right cingulum. Across these pathways, greater age-related fractional anisotropy increases were observed at lower levels of A/D. The results suggest that subclinical A/D symptoms are associated with the rate of microstructural development within several white matter pathways that have been implicated in affect regulation, as well as mood and anxiety psychopathology.</jats:p

    Multiple Meta-model Quantifying for Medical Visual Question Answering

    Get PDF
    Transfer learning is an important step to extract meaningful features and overcome the data limitation in the medical Visual Question Answering (VQA) task. However, most of the existing medical VQA methods rely on external data for transfer learning, while the meta-data within the dataset is not fully utilized. In this paper, we present a new multiple meta-model quantifying method that effectively learns meta-annotation and leverages meaningful features to the medical VQA task. Our proposed method is designed to increase meta-data by auto-annotation, deal with noisy labels, and output meta-models which provide robust features for medical VQA tasks. Extensively experimental results on two public medical VQA datasets show that our approach achieves superior accuracy in comparison with other state-of-the-art methods, while does not require external data to train meta-models. Source code available at: https://github.com/aioz-ai/MICCAI21_MMQ
    • …
    corecore