1,618 research outputs found
Infrared observations of P/Halley and P/Encke
Broadband optical/infrared photometers responding from 0.5 to 23 microns mounted on the Univ. of Minnesota (UM) O'Brien 76-cm telescope, Wyoming Infrared Observatory 234-cm telescope, and UM's Mount Lemmon Infrared Observatory 152-cm telescope were used to measure comet Halley more than 30 times between 12 Dec. 1985 to 6 May 1986. The Wyoming system was used to measure P/Encke on 24 Jul. 1987. The equipment and observations of Halley were fully described by Gehrz and Ney. Conclusions based on a preliminary analysis of the Halley and P/Encke data are reported
Selenium-Binding Protein 1 Indicates Myocardial Stress and Risk for Adverse Outcome in Cardiac Surgery
Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1 concentrations in patients (n = 75) necessitating cardioplegia and a cardiopulmonary bypass (CPB) during the course of the cardiac surgery. Serum samples were collected at seven time-points spanning the full surgical process. SELENBP1 was quantified by a highly sensitive newly developed immunological assay. Serum concentrations of SELENBP1 increased markedly during the intervention and showed a positive association with the duration of ischemia (ρ = 0.6, p < 0.0001). Elevated serum SELENBP1 concentrations at 1 h after arrival at the intensive care unit (post-surgery) were predictive to identify patients at risk of adverse outcome (death, bradycardia or cerebral ischemia, "endpoint 1"; OR 29.9, CI 3.3-268.8, p = 0.00027). Circulating SELENBP1 during intervention (2 min after reperfusion or 15 min after weaning from the CPB) correlated positively with an established marker of myocardial infarction (CK-MB) measured after the intervention (each with ρ = 0.5, p < 0.0001). We concluded that serum concentrations of SELENBP1 were strongly associated with cardiac arrest and the duration of myocardial ischemia already early during surgery, thereby constituting a novel and promising quantitative marker for myocardial hypoxia, with a high potential to improve diagnostics and prediction in combination with the established clinical parameters
Observations and simulations of recurrent novae: U Sco and V394 CrA
Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized
Chaos and Universality in a Four-Dimensional Spin Glass
We present a finite size scaling analysis of Monte Carlo simulation results
on a four dimensional Ising spin glass. We study chaos with both coupling and
temperature perturbations, and find the same chaos exponent in each case. Chaos
is investigated both at the critical temperature and below where it seems to be
more efficient (larger exponent). Dimension four seems to be above the critical
dimension where chaos with temperature is no more present in the critical
region. Our results are consistent with the Gaussian and bimodal coupling
distributions being in the same universality class.Comment: 11 pages, including 6 postscript figures. Latex with revtex macro
Fractal Droplets in Two Dimensional Spin Glasses
The two-dimensional Edwards-Anderson model with Gaussian bond distribution is
investigated at T=0 with a numerical method. Droplet excitations are directly
observed. It turns out that the averaged volume of droplets is proportional to
l^D with D = 1.80(2) where l is the spanning length of droplets, revealing
their fractal nature. The exponent characterizing the l dependence of the
droplet excitation energy is estimated to be -0.42(4), clearly different from
the stiffness exponent for domain wall excitations.Comment: 4 pages 4 figure
Fragility of the Free-Energy Landscape of a Directed Polymer in Random Media
We examine the sensitiveness of the free-energy landscape of a directed
polymer in random media with respect to various kinds of infinitesimally weak
perturbation including the intriguing case of temperature-chaos. To this end,
we combine the replica Bethe ansatz approach outlined in cond-mat/0112384, the
mapping to a modified Sinai model and numerically exact calculations by the
transfer-matrix method. Our results imply that for all the perturbations under
study there is a slow crossover from a weakly perturbed regime where rare
events take place to a strongly perturbed regime at larger length scales beyond
the so called overlap length where typical events take place leading to chaos,
i.e. a complete reshuffling of the free-energy landscape. Within the replica
space, the evidence for chaos is found in the factorization of the replicated
partition function induced by infinitesimal perturbations. This is the reflex
of explicit replica symmetry breaking.Comment: 29 pages, Revtex4, ps figure
A real space renormalization group approach to spin glass dynamics
The slow non-equilibrium dynamics of the Edwards-Anderson spin glass model on
a hierarchical lattice is studied by means of a coarse-grained description
based on renormalization concepts. We evaluate the isothermal aging properties
and show how the occurrence of temperature chaos is connected to a gradual loss
of memory when approaching the overlap length. This leads to rejuvenation
effects in temperature shift protocols and to rejuvenation--memory effects in
temperature cycling procedures with a pattern of behavior parallel to
experimental observations.Comment: 4 pages, 4 figure
Structure and peculiarities of the (8 x n)-type Si(001) surface prepared in a molecular-beam epitaxy chamber: a scanning tunneling microscopy study
A clean Si(001) surface thermally purified in an ultrahigh vacuum
molecular-beam epitaxy chamber has been investigated by means of scanning
tunneling microscopy. The morphological peculiarities of the Si(001) surface
have been explored in detail. The classification of the surface structure
elements has been carried out, the dimensions of the elements have been
measured, and the relative heights of the surface relief have been determined.
A reconstruction of the Si(001) surface prepared in the molecular-beam epitaxy
chamber has been found to be (8 x n). A model of the Si(001)-(8 x n) surface
structure is proposed.Comment: 4 pages, 8 figures. Complete versio
Application of a minimum cost flow algorithm to the three-dimensional gauge glass model with screening
We study the three-dimensional gauge glass model in the limit of strong
screening by using a minimum cost flow algorithm, enabling us to obtain EXACT
ground states for systems of linear size L<=48. By calculating the domain-wall
energy, we obtain the stiffness exponent theta = -0.95+/-0.03, indicating the
absence of a finite temperature phase transition, and the thermal exponent
nu=1.05+/-0.03. We discuss the sensitivity of the ground state with respect to
small perturbations of the disorder and determine the overlap length, which is
characterized by the chaos exponent zeta=3.9+/-0.2, implying strong chaos.Comment: 4 pages RevTeX, 2 eps-figures include
Spin glasses and algorithm benchmarks: A one-dimensional view
Spin glasses are paradigmatic models that deliver concepts relevant for a
variety of systems. However, rigorous analytical results are difficult to
obtain for spin-glass models, in particular for realistic short-range models.
Therefore large-scale numerical simulations are the tool of choice. Concepts
and algorithms derived from the study of spin glasses have been applied to
diverse fields in computer science and physics. In this work a one-dimensional
long-range spin-glass model with power-law interactions is discussed. The model
has the advantage over conventional systems in that by tuning the power-law
exponent of the interactions the effective space dimension can be changed thus
effectively allowing the study of large high-dimensional spin-glass systems to
address questions as diverse as the existence of an Almeida-Thouless line,
ultrametricity and chaos in short range spin glasses. Furthermore, because the
range of interactions can be changed, the model is a formidable test-bed for
optimization algorithms.Comment: 10 pages, 8 figures (two in crappy quality due to archive
restrictions). Proceedings of the International Workshop on
Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
- …
