214 research outputs found

    Similarity-aware deep attentive model for clickbait detection

    Full text link
    © Springer Nature Switzerland AG 2019. Clickbait is a type of web content advertisements designed to entice readers into clicking accompanying links. Usually, such links will lead to articles that are either misleading or non-informative, making the detection of clickbait essential for our daily lives. Automated clickbait detection is a relatively new research topic. Most recent work handles the clickbait detection problem with deep learning approaches to extract features from the meta-data of content. However, little attention has been paid to the relationship between the misleading titles and the target content, which we found to be an important clue for enhancing clickbait detection. In this work, we propose a deep similarity-aware attentive model to capture and represent such similarities with better expressiveness. In particular, we present the ways of either using similarity only or integrating it with other available quality features for the clickbait detection. We evaluate our model on two benchmark datasets, and the experimental results demonstrate the effectiveness of our approach by outperforming a series of competitive state-of-the-arts and baseline methods

    Real-time embedded intelligence system : emotion recognition on Raspberry Pi with Intel NCS

    Get PDF
    Convolutional Neural Networks (CNNs) have exhibited certain human-like performance on computer vision related tasks. Over the past few years since they have outperformed conventional algorithms in a range of image processing problems. However, to utilise a CNN model with millions of free parameters on a source limited embedded system is a challenging problem. The Intel Neural Compute Stick (NCS) provides a possible route for running largescale neural networks on a low cost, low power, portable unit. In this paper, we propose a CNN based Raspberry Pi system that can run a pre-trained inference model in real time with an average power consumption of 6.2W. The Intel Movidius NCS, which avoids requirements of expensive processing units e.g. GPU, FPGA. The system is demonstrated using a facial image-based emotion recogniser. A fine-tuned CNN model is designed and trained to perform inference on each captured frame within the processing modules of NCS

    Surface nanogrooving of carbon microtubes

    Full text link
    Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography, through acoustic cavitation on the surface of processing fibres. The effect of nanogrooving on roughness parameters is described, along with the role of surface modified carbon tubes on rheological behaviour, homogeneity, and coherency of extrudate. The measurements showed that nanogrooving increases the surface area of carbon microtubes, as a result, die swelling of the extrudate is reduced. Furthermore, after solidification, the mechanical strength of composite is reinforced due to stronger interactions between nanogrooved carbon tubes and polymer matrix

    Quantitative Proteomic Analysis of Human Embryonic Stem Cell Differentiation by 8-Plex iTRAQ Labelling

    Get PDF
    Analysis of gene expression to define molecular mechanisms and pathways involved in human embryonic stem cells (hESCs) proliferation and differentiations has allowed for further deciphering of the self-renewal and pluripotency characteristics of hESC. Proteins associated with hESCs were discovered through isobaric tags for relative and absolute quantification (iTRAQ). Undifferentiated hESCs and hESCs in different stages of spontaneous differentiation by embryoid body (EB) formation were analyzed. Using the iTRAQ approach, we identified 156 differentially expressed proteins involved in cell proliferation, apoptosis, transcription, translation, mRNA processing, and protein synthesis. Proteins involved in nucleic acid binding, protein synthesis, and integrin signaling were downregulated during differentiation, whereas cytoskeleton proteins were upregulated. The present findings added insight to our understanding of the mechanisms involved in hESC proliferation and differentiation
    • …
    corecore