3,411 research outputs found

    First-principles study on dielectric properties of NaCl crystal and ultrathin NaCl films under finite external electric field

    Full text link
    We present a first-principles study on the dielectric properties of an NaCl crystal and ultrathin NaCl films under a finite external electric field. Our results show that the high-frequency dielectric constant of the films is not affected by the finite size effect from crystal surfaces and is close to that of the crystal, whereas the static one is sensitive to the thickness of the film due to the difference in the atomic configurations between the surface and inside of the film.Comment: 11 pages and 4 figure

    Bipolar-Hyper-Shell Galactic Center Statrburst Model: Further Evidence from ROSAT Data and New Radio and X-ray Simulations

    Get PDF
    Using the all-sky ROSAT soft X-ray and 408-MHz radio continuum data, we show that the North Polar Spur and its western and southern counter-spurs draw a giant dumbbell-shape necked at the galactic plane. We interpret these features as due to a shock front originating from a starburst 15 million years ago with a total energy of the order of ∼1056\sim 10^{56} ergs or 10510^5 type II supernovae. We simulate all-sky distributions of radio continuum and soft X-ray intensities based on the bipolar-hyper-shell galactic center starburst model. The simulations can well reproduce the radio NPS and related spurs, as well as radio spurs in the tangential directions of spiral arms. Simulated X-ray maps in 0.25, 0.75 and 1.5 keV bands reproduce the ROSAT X-ray NPS, its western and southern counter-spurs, and the absorption layer along the galactic plane. We propose to use the ROSAT all-sky maps to probe the physics of gas in the halo-intergalactic interface, and to directly date and measure the energy of a recent Galactic Center starburst.Comment: To appear in ApJ, Latex MS in ApJ macro, 8 figures in jpg (original quality ps figs available on request

    Smooth Approximation of Lipschitz functions on Riemannian manifolds

    Get PDF
    We show that for every Lipschitz function ff defined on a separable Riemannian manifold MM (possibly of infinite dimension), for every continuous ϵ:M→(0,+∞)\epsilon:M\to (0,+\infty), and for every positive number r>0r>0, there exists a C∞C^\infty smooth Lipschitz function g:M→Rg:M\to\mathbb{R} such that ∣f(p)−g(p)∣≤ϵ(p)|f(p)-g(p)|\leq\epsilon(p) for every p∈Mp\in M and Lip(g)≤Lip(f)+r\textrm{Lip}(g)\leq\textrm{Lip}(f)+r. Consequently, every separable Riemannian manifold is uniformly bumpable. We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville-Godefroy-Zizler's smooth variational principle.Comment: 10 page

    Discovery of Molecular Gas in the Outflow and Tidal Arms around M82

    Get PDF
    We present the first fully sampled map of 12CO (1-0) emission from M82 covering the entire galaxy. Our map contains a 12 x 15 kpc^2 area. We find that extraplanar CO emission, previously reported at short distances above the galactic plane, extends to heights of up to 6 kpc above the disk. Some of this emission is associated with tidal arms seen in HI, implying either that M82 contained substantial amounts of molecular gas in the outer disk, or that molecular gas formed after the tidal features. CO emission along the direction of the outflow extends to distances of 3 kpc above and below the disk. At this distance, the line is shifted in velocity about 100 km/s, and has the same sense as the galactic outflow from the central starburst. This implies that molecular gas may be entrained into the outflow.Comment: 4 pages, 6 figures. Uses emulateapj5. Accepted by ApJ Letter

    Kinematics of Spiral Arm Streaming in M51

    Full text link
    We use CO and H alpha velocity fields to study the gas kinematics in the spiral arms and interarms of M51 (NGC 5194), and fit the 2D velocity field to estimate the radial and tangential velocity components as a function of spiral phase (arm distance). We find large radial and tangential streaming velocities, which are qualitatively consistent with the predictions of density wave theory and support the existence of shocks. The streaming motions are complex, varying significantly across the galaxy as well as along and between arms. Aberrations in the velocity field indicate that the disk is not coplanar, perhaps as far in as 20\arcsec\ (800 pc) from the center. Velocity profile fits from CO and H alpha are typically similar, suggesting that most of the H alpha emission originates from regions of recent star formation. We also explore vortensity and mass conservation conditions. Vortensity conservation, which does not require a steady state, is empirically verified. The velocity and density profiles show large and varying mass fluxes, which are inconsistent with a steady flow for a single dominant global spiral mode. We thus conclude that the spiral arms cannot be in a quasi-steady state in any rotating frame, and/or that out of plane motions may be significant.Comment: 50 pages, including 20 figures; Accepted for publication in ApJ. PDF version with high resolution figures available at http://www.astro.umd.edu/~shetty/Research

    Anisotropic Superconducting Properties of Optimally Doped BaFe2_2(As0.65_{0.65}P0.35_{0.35})2_2 under Pressure

    Full text link
    Magnetic measurements on optimally doped single crystals of BaFe2_2(As1−x_{1-x}Px_{x})2_2 (x≈0.35x\approx0.35) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe2_2(As1−x_{1-x}Px_{x})2_2 as a function of phosphorus content.Comment: 5 pages, 3 figure

    Magnetic field distribution and characteristic fields of the vortex lattice for a clean superconducting niobium sample in an external field applied along a three-fold axis

    Full text link
    The field distribution in the vortex lattice of a pure niobium single crystal with an external field applied along a three-fold axis has been investigated by the transverse-field muon-spin-rotation (TF-μ\muSR) technique over a wide range of temperatures and fields. The experimental data have been analyzed with the Delrieu's solution for the form factor supplemented by phenomenological formulas for the parameters. This has enabled us to experimentally establish the temperatures and fields for the Delrieu's, Ginzburg-Landau's, and Klein's regions of the vortex lattice. Using the numerical solution of the quasiclassical Eilenberger's equation the experimental results have been reasonably understood. They should apply to all clean BCS superconductors. The analytical Delrieu's model supplemented by phenomenological formulas for its parameters is found to be reliable for analyzing TF-μ\muSR experimental data for a substantial part of the mixed phase. The Abrikosov's limit is contained in it.Comment: 12 pages, 15 figure
    • …
    corecore