67,967 research outputs found

    Baryon Oscillations and Consistency Tests for Photometrically-Determined Redshifts of Very Faint Galaxies

    Full text link
    Weak lensing surveys that can potentially place strong constraints on dark energy parameters can only do so if the source redshift means and error distributions are very well known. We investigate prospects for controlling errors in these quantities by exploiting their influence on the power spectra of the galaxies. Although, from the galaxy power spectra alone, sufficiently precise and simultaneous determination of redshift biases and variances is not possible, a strong consistency test is. Given the redshift error rms, galaxy power spectra can be used to determine the mean redshift of a group of galaxies to subpercent accuracy. Although galaxy power spectra cannot be used to determine the redshift error rms, they can be used to determine this rms divided by the Hubble parameter, a quantity that may be even more valuable for interpretation of cosmic shear data than the rms itself. We also show that galaxy power spectra, due to the baryonic acoustic oscillations, can potentially lead to constraints on dark energy that are competitive with those due to the cosmic shear power spectra from the same survey.Comment: 8 pages, 6 figures, submitted to Ap

    Entanglement creation between two causally-disconnected objects

    Full text link
    We study the full entanglement dynamics of two uniformly accelerated Unruh-DeWitt detectors with no direct interaction in between but each coupled to a common quantum field and moving back-to-back in the field vacuum. For two detectors initially prepared in a separable state our exact results show that quantum entanglement between the detectors can be created by the quantum field under some specific circumstances, though each detector never enters the other's light cone in this setup. In the weak coupling limit, this entanglement creation can occur only if the initial moment is placed early enough and the proper acceleration of the detectors is not too large or too small compared to the natural frequency of the detectors. Once entanglement is created it lasts only a finite duration, and always disappears at late times. Prior result by Reznik derived using the time-dependent perturbation theory with extended integration domain is shown to be a limiting case of our exact solutions at some specific moment. In the strong coupling and high acceleration regime, vacuum fluctuations experienced by each detector locally always dominate over the cross correlations between the detectors, so entanglement between the detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion

    Noise kernel for a quantum field in Schwarzschild spacetime under the Gaussian approximation

    Full text link
    A method is given to compute an approximation to the noise kernel, defined as the symmetrized connected 2-point function of the stress tensor, for the conformally invariant scalar field in any spacetime conformal to an ultra-static spacetime for the case in which the field is in a thermal state at an arbitrary temperature. The most useful applications of the method are flat space where the approximation is exact and Schwarzschild spacetime where the approximation is better than it is in most other spacetimes. The two points are assumed to be separated in a timelike or spacelike direction. The method involves the use of a Gaussian approximation which is of the same type as that used by Page to compute an approximate form of the stress tensor for this field in Schwarzschild spacetime. All components of the noise kernel have been computed exactly for hot flat space and one component is explicitly displayed. Several components have also been computed for Schwarzschild spacetime and again one component is explicitly displayed.Comment: 34 pages, no figures. Substantial revisions in Secs. I, IV, and V; minor revisions elsewhere; new results include computation of the exact noise kernel for hot flat space and an approximate computation of the noise kernel for a thermal state at an arbitrary temperature in Schwarzschild spacetime when the points are split in the time directio

    Variational Monte Carlo study of gapless spin liquid in the spin-1/21/2 XXZ antiferromagnetic model on the kagome lattice

    Full text link
    By using the variational Monte Carlo technique, we study the spin-1/21/2 XXZ antiferromagnetic model (with easy-plane anisotropy) on the kagome lattice. A class of Gutzwiller projected fermionic states with a spin Jastrow factor is considered to describe either spin liquids (with U(1)U(1) or Z2Z_2 symmetry) or magnetically ordered phases (with q=(0,0){\bf q}=(0,0) or q=(4Ď€/3,0){\bf q}=(4\pi/3,0)). We find that the magnetic states are not stable in the thermodynamic limit. Moreover, there is no energy gain to break the gauge symmetry from U(1)U(1) to Z2Z_2 within the spin-liquid states, as previously found in the Heisenberg model. The best variational wave function is therefore the U(1)U(1) Dirac state, supplemented by the spin Jastrow factor. Furthermore, a vanishing S=2S=2 spin gap is obtained at the variational level, in the whole regime from the XYXY to the Heisenberg model.Comment: 7 pages, 7 figure

    On the non-Gaussianity from Recombination

    Get PDF
    The non-linear effects operating at the recombination epoch generate a non-Gaussian signal in the CMB anisotropies. Such a contribution is relevant because it represents a major part of the second-order radiation transfer function which must be determined in order to have a complete control of both the primordial and non-primordial part of non-Gaussianity in the CMB anisotropies. We provide an estimate of the level of non-Gaussianity in the CMB arising from the recombination epoch which shows up mainly in the equilateral configuration. We find that it causes a contamination to the possible measurement of the equilateral primordial bispectrum shifting the minimum detectable value of the non-Gaussian parameter f^equil_NL by Delta f^equil_NL= O(10) for an experiment like Planck.Comment: LaTeX file; 11 pages. v2: Typos corrected; references added; comments about the effective non-linearity parameter added in Sec. IV; comments added in the conclusions of Sec. IV. v3: References added; some clarifications added as footnotes 4 and 6, and in Sec. 3. Matches version accepted for publication in JCA

    Entanglement, recoherence and information flow in an accelerated detector - quantum field system: Implications for black hole information issue

    Full text link
    We study an exactly solvable model where an uniformly accelerated detector is linearly coupled to a massless scalar field initially in the Minkowski vacuum. Using the exact correlation functions we show that as soon as the coupling is switched on one can see information flowing from the detector to the field and propagating with the radiation into null infinity. By expressing the reduced density matrix of the detector in terms of the two-point functions, we calculate the purity function in the detector and study the evolution of quantum entanglement between the detector and the field. Only in the ultraweak coupling regime could some degree of recoherence in the detector appear at late times, but never in full restoration. We explicitly show that under the most general conditions the detector never recovers its quantum coherence and the entanglement between the detector and the field remains large at late times. To the extent this model can be used as an analog to the system of a black hole interacting with a quantum field, our result seems to suggest in the prevalent non-Markovian regime, assuming unitarity for the combined system, that black hole information is not lost but transferred to the quantum field degrees of freedom. Our combined system will evolve into a highly entangled state between a remnant of large area (in Bekenstein's black hole atom analog) without any information of its initial state, and the quantum field, now imbued with complex information content not-so-easily retrievable by a local observer.Comment: 16 pages, 12 figures; minor change

    Metric fluctuations of an evaporating black hole from back reaction of stress tensor fluctuations

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole under the stochastic gravity program. The central object of interest is the noise kernel, which is the symmetrized two-point quantum correlation function of the stress tensor operator. As a concrete example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully scrutinized and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations when trying to localize the horizon as a three-dimensional hypersurface, as in the classical case, and, as a consequence, a more accurate picture of the horizon as possessing a finite effective width due to quantum fluctuations. This is supported by a systematic analysis of the noise kernel in curved spacetime smeared with different functions under different conditions, the details are collected in the appendices. This case study shows a pathway for probing quantum metric fluctuations near the horizon and understanding their physical meaning.Comment: 21 pages, REVTe

    Variational Monte Carlo study of chiral spin liquid in the extended Heisenberg model on the Kagome lattice

    Get PDF
    We investigate the extended Heisenberg model on the Kagome lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. In particular, when both second- and third-neighbor super-exchanges are considered, we find that a gapped spin liquid described by non-trivial magnetic fluxes and long-range chiral-chiral correlations is energetically favored compared to the gapless U(1) Dirac state. Furthermore, the topological Chern number, obtained by integrating the Berry curvature, and the degeneracy of the ground state, by constructing linearly independent states, lead us to identify this flux state as the chiral spin liquid with C=1/2C=1/2 fractionalized Chern number.Comment: 9 pages, 7 figure
    • …
    corecore