34,143 research outputs found
Harmonic generation by atoms in circularly polarized laser fields: far-off and near resonances regimes
The generation of harmonics by atoms interacting with two circularly
polarized and frequency related laser fields is addressed through ab initio
numerical simulations. A detailed charaterization of a few specific harmonics
is given. In particular, the two different cases where the total energy
absorbed through photons is far-off or close to the energy gap between
different atomic states are investigated. It is found that the conversion
efficiency in the harmonic generation is strongly dependent on the inner atomic
structure and in certain specific cases it can be significantly enhanced within
a small frequency range.Comment: Submitted to Appl. Phys. B, 4 page
Degree Sequences and the Existence of -Factors
We consider sufficient conditions for a degree sequence to be forcibly
-factor graphical. We note that previous work on degrees and factors has
focused primarily on finding conditions for a degree sequence to be potentially
-factor graphical.
We first give a theorem for to be forcibly 1-factor graphical and, more
generally, forcibly graphical with deficiency at most . These
theorems are equal in strength to Chv\'atal's well-known hamiltonian theorem,
i.e., the best monotone degree condition for hamiltonicity. We then give an
equally strong theorem for to be forcibly 2-factor graphical.
Unfortunately, the number of nonredundant conditions that must be checked
increases significantly in moving from to , and we conjecture that
the number of nonredundant conditions in a best monotone theorem for a
-factor will increase superpolynomially in .
This suggests the desirability of finding a theorem for to be forcibly
-factor graphical whose algorithmic complexity grows more slowly. In the
final section, we present such a theorem for any , based on Tutte's
well-known factor theorem. While this theorem is not best monotone, we show
that it is nevertheless tight in a precise way, and give examples illustrating
this tightness.Comment: 19 page
Large magnetoresistance in the antiferromagnetic semi-metal NdSb
There has been considerable interest in topological semi-metals that exhibit
extreme magnetoresistance (XMR). These have included materials lacking
inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2.
However, it was reported recently that LaSb and LaBi also exhibit XMR, even
though the rock-salt structure of these materials has inversion symmetry, and
the band-structure calculations do not show a Dirac dispersion in the bulk.
Here, we present magnetoresistance and specific heat measurements on NdSb,
which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate,
and in analogy with the lanthanum monopnictides, is expected to be a
topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %,
even within the AFM state, illustrating that XMR can occur independently of the
absence of time reversal symmetry breaking in zero magnetic field. The
persistence of XMR in a magnetic system offers promise of new functionality
when combining topological matter with electronic correlations. We also find
that in an applied magnetic field below the Neel temperature there is a first
order transition, consistent with evidence from previous neutron scattering
work.Comment: 5 pages, 6 figure
A Mott-like State of Molecules
We prepare a quantum state where each site of an optical lattice is occupied
by exactly one molecule. This is the same quantum state as in a Mott insulator
of molecules in the limit of negligible tunneling. Unlike previous Mott
insulators, our system consists of molecules which can collide inelastically.
In the absence of the optical lattice these collisions would lead to fast loss
of the molecules from the sample. To prepare the state, we start from a Mott
insulator of atomic 87Rb with a central region, where each lattice site is
occupied by exactly two atoms. We then associate molecules using a Feshbach
resonance. Remaining atoms can be removed using blast light. Our method does
not rely on the molecule-molecule interaction properties and is therefore
applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics
(ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference
Proceedings, Melville, 2006, Vol. 869, pp. 278-28
Can the unresolved X-ray background be explained by emission from the optically-detected faint galaxies of the GOODS project?
The emission from individual X-ray sources in the Chandra Deep Fields and
XMM-Newton Lockman Hole shows that almost half of the hard X-ray background
above 6 keV is unresolved and implies the existence of a missing population of
heavily obscured active galactic nuclei (AGN). We have stacked the 0.5-8 keV
X-ray emission from optical sources in the Great Observatories Origins Deep
Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these
galaxies, which are individually undetected in X-rays, are hosting the
hypothesised missing AGN. In the 0.5-6 keV energy range the stacked-source
emission corresponds to the remaining 10-20 per cent of the total background --
the fraction that has not been resolved by Chandra. The spectrum of the stacked
emission is consistent with starburst activity or weak AGN emission. In the 6-8
keV band, we find that upper limits to the stacked X-ray intensity from the
GOODS galaxies are consistent with the ~40 per cent of the total background
that remains unresolved, but further selection refinement is required to
identify the X-ray sources and confirm their contribution.Comment: 7 pages, 1 figure, accepted for publication in MNRA
- …
