34,143 research outputs found

    Harmonic generation by atoms in circularly polarized laser fields: far-off and near resonances regimes

    Full text link
    The generation of harmonics by atoms interacting with two circularly polarized and frequency related laser fields is addressed through ab initio numerical simulations. A detailed charaterization of a few specific harmonics is given. In particular, the two different cases where the total energy absorbed through photons is far-off or close to the energy gap between different atomic states are investigated. It is found that the conversion efficiency in the harmonic generation is strongly dependent on the inner atomic structure and in certain specific cases it can be significantly enhanced within a small frequency range.Comment: Submitted to Appl. Phys. B, 4 page

    Degree Sequences and the Existence of kk-Factors

    Get PDF
    We consider sufficient conditions for a degree sequence π\pi to be forcibly kk-factor graphical. We note that previous work on degrees and factors has focused primarily on finding conditions for a degree sequence to be potentially kk-factor graphical. We first give a theorem for π\pi to be forcibly 1-factor graphical and, more generally, forcibly graphical with deficiency at most β0\beta\ge0. These theorems are equal in strength to Chv\'atal's well-known hamiltonian theorem, i.e., the best monotone degree condition for hamiltonicity. We then give an equally strong theorem for π\pi to be forcibly 2-factor graphical. Unfortunately, the number of nonredundant conditions that must be checked increases significantly in moving from k=1k=1 to k=2k=2, and we conjecture that the number of nonredundant conditions in a best monotone theorem for a kk-factor will increase superpolynomially in kk. This suggests the desirability of finding a theorem for π\pi to be forcibly kk-factor graphical whose algorithmic complexity grows more slowly. In the final section, we present such a theorem for any k2k\ge2, based on Tutte's well-known factor theorem. While this theorem is not best monotone, we show that it is nevertheless tight in a precise way, and give examples illustrating this tightness.Comment: 19 page

    Large magnetoresistance in the antiferromagnetic semi-metal NdSb

    Full text link
    There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rock-salt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate, and in analogy with the lanthanum monopnictides, is expected to be a topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %, even within the AFM state, illustrating that XMR can occur independently of the absence of time reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Neel temperature there is a first order transition, consistent with evidence from previous neutron scattering work.Comment: 5 pages, 6 figure

    A Mott-like State of Molecules

    Full text link
    We prepare a quantum state where each site of an optical lattice is occupied by exactly one molecule. This is the same quantum state as in a Mott insulator of molecules in the limit of negligible tunneling. Unlike previous Mott insulators, our system consists of molecules which can collide inelastically. In the absence of the optical lattice these collisions would lead to fast loss of the molecules from the sample. To prepare the state, we start from a Mott insulator of atomic 87Rb with a central region, where each lattice site is occupied by exactly two atoms. We then associate molecules using a Feshbach resonance. Remaining atoms can be removed using blast light. Our method does not rely on the molecule-molecule interaction properties and is therefore applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics (ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference Proceedings, Melville, 2006, Vol. 869, pp. 278-28

    Can the unresolved X-ray background be explained by emission from the optically-detected faint galaxies of the GOODS project?

    Full text link
    The emission from individual X-ray sources in the Chandra Deep Fields and XMM-Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5-8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesised missing AGN. In the 0.5-6 keV energy range the stacked-source emission corresponds to the remaining 10-20 per cent of the total background -- the fraction that has not been resolved by Chandra. The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6-8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ~40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.Comment: 7 pages, 1 figure, accepted for publication in MNRA
    corecore