314 research outputs found

    Theoretical models and numerical studies of waves in a three-fluid medium

    Get PDF
    Mathematical models of wave propagation in three-fluid plasma and numerical solutions to dispersion and propagation propertie

    Excessive Yawning and SSRI Therapy

    Get PDF
    As we become more experienced with the long-term use of selective serotonin reuptake inhibitors (SSRIs), more subtle side-effects may become evident. Clinicians may be aware of yawning as a side-effect of antidepressant therapy, however sparse literature exists on the topic. We present two cases in which excessive daytime yawning was associated with SSRI treatment

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings

    An Easily Constructed, Tuning Free, Ultra-broadband Probe for NMR

    Get PDF
    We have developed an easy to construct, non-resonant wideband NMR probe. The probe is of the saddle coil geometry and is designed such that the coil itself forms a transmission line. The probe thus requires no tuning or matching elements. We use the probe with a spectrometer whose duplexer circuitry employs a simple RF switch instead of the more common lambda/4 lines, so the entire probe and spectrometer perform in an essentially frequency-independent manner. Despite being designed with electro- and magnetostatic formulas, the probe performs well at frequencies up to 150 MHz and beyond. We expect that with additional design effort, the probe could be modified for use at significantly higher frequencies. Because our construction method relies on commercial circuit fabrication techniques, identical probes can be easily and accurately produced

    Observation of ultracold atomic bubbles in orbital microgravity

    Get PDF
    Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles1–6. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble—potentially Bose–Einstein condensed—relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion7–17. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics18–20. Here we report observations from the NASA Cold Atom Lab21 facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose–Einstein condensed bubble, the character of its excitations and the role of topology in its evolution
    • …
    corecore