209 research outputs found

    An anion transporter theory of the outer hair cell motor protein.

    Get PDF
    This thesis addresses the mechanism of electromotility in outer hair cells (OHCs) of the mammalian cochlea. Prestin, a protein densely packed in the lateral membrane is assumed to drive electromotility. A current hypothesis is that prestin is an incomplete transporter, shuttling chloride across the membrane without allowing it to dissociate at the extracellular surface. In this thesis kinetic models are formulated to show that this hypothesis cannot reproduce the previously published experimental data from electrical recordings. However an alternative model of prestin as an anion exchanger (modelled here as a chloride/sulphate exchanger) is formulated, which can reproduce many of the experimental observations. In this model the experimentally observed charge movements across the cell membrane are produced by the translocation of a chloride ion combined with some intrinsic charged residues. To further test the predictions of the model, patch clamp recordings were performed on dissociated OHCs, in the excised patch and whole-cell configurations. The OHC non-linear capacitance (NLC) depended on the concentration of intracellular chloride (Clj). When Clj was removed from internal and external solutions, a residual NLC (-15- 30%) was found, which was consistent with the predictions of the model for contaminant levels of Clj ( 10uM). Additionally the effect on the NLC of reducing Clj depended on the species of anion used to replace Clj. The largest effect was produced by replacement with sulphate, whilst the smallest effect was produced by replacement with glutamate. These findings support the model. Finally two potential causes for previous controversy in the literature were identified. 1) The NLC depended on the recording configuration when Clj was reduced below 1-1 OmM. 2) The dependence of the NLC on Clj was affected when Tris+ replaced Na+ as the major cation in solutions

    Surgery in recurrent ovarian cancer

    Get PDF
    Ovarian cancer is one of the most challenging diseases in gynecologic oncology. The presentation of frequent recurrences requires the establishment and further development of therapy standards for this patient group. Surgery is crucial in the therapy of patients with primary ovarian cancer, and the postoperative residual tumor mass is the most relevant clinical prognostic factor. The surgical management of recurrent disease is still subject to an emotional international discussion. Only a few prospective clinical trials focused on the effects of surgery in relapsed ovarian cancer have been published. The available data show improvements in the prognosis due to complete cytoreduction in the setting of recurrence. However, the selection of eligible patients is the essential issue. Therefore, the establishment of reliable predictive factors for complete tumor resection as well as a definition of the group of patients who might profit from this approach remains a field for research. Further randomized trials designed to develop and incorporate operative standards for recurrent ovarian cancer should follow

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Asymmetric Switching in a Homodimeric ABC Transporter: A Simulation Study

    Get PDF
    ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs) is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs

    Demand for Zn2+ in Acid-Secreting Gastric Mucosa and Its Requirement for Intracellular Ca2+

    Get PDF
    Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+).This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues
    corecore