26 research outputs found

    Bio-adipic acid prepared by base-free aerobic oxidation of bio-based 1,6-hexanediol over Pt-Au/ZrO2 and Pd-Au/ZrO2 catalysts.

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBEInternational audience1. Introduction There is an interest in the production of bio-based adipic acid derived from lignocellulosic biomass as an alternative or a supplement to the petrochemical process.1 Adipic acid is an important monomer in the manufacture of nylon 6,6 and polyurethanes, and a chemical used as food and cosmetic additives.1 It is commonly produced by nitric acid oxidation of a cyclohexanol/cyclohexanone mix.1 Recently, synthesis of 1,6-hexanediol (HDO) from renewables has been described via 5-hydroxymethylfurfural2 or tetrahydropyran-2-methanol3. Thereafter, catalytic oxidation of HDO to adipic acid can be carried out in water using oxygen and Pt/C under acidic conditions or Au/C under basic conditions.4 However, Au-Pt and Au-Pd bimetallic supported catalysts have already shown good performance in oxidation of alcohols or polyols in neutral water.5 Herein we report for the first time the oxidation of 1,6-hexanediol to adipic acid in base-free aqueous medium over Pt-Au/ZrO2 and Pd-Au/ZrO2 catalysts.2. Experimental Monometallic (Pd, Pt, Au) and Pt-Au/ZrO2 and Pd-Au/ZrO2 bimetallic catalysts with different compositions were prepared by wet impregnation of a ZrO2 support (MEL Chemicals, SBET=139 m2 g−1) with aqueous solutions of H2PtCl6, HAuCl4 and PdCl2 and NaBH4 reduction.5,6 The solids were characterized by ICP-OES, XRD, XPS, and TEM. Catalytic oxidation of HDO (0.1 mol. L-1) was carried out in water in a 300 mL batch reactor at 70°C under 40 bar of air, with a HDO/metal molar ratio of 100. Liquid samples were periodically taken during reaction and analyzed by HPLC and Total Organic Carbon (TOC). 3. Results and discussion XRD patterns of the bimetallic catalysts demonstrated the formation of Au-Pd and Au-Pt alloys whose composition, according to Vegard’s law, matched with the metal loadings. Fig.1 shows the evolution of HDO conversion and yields to the different products vs. time over 3.7%Pt/ZrO2. HDO was rapidly and totally converted within 3 h. DA was formed by sequential oxidation of HDO via 6-hydroxyhexanal (ALD), 6-hydroxyhexanoic acid (HA), and 6-oxohexanoic acid (AA) (Scheme 1). A final yield of 80% was observed after 48 h. Comparison of TOC and carbon balance from HPLC analysis were in very good agreement. Scheme 1. Reaction pathway for oxidation of HDO. Figure 1. HDO (0.1M) conversion () and yields to ALD (), HA (), AA (â–Č) and DA () over Pt/ZrO2 at 70°C under 40 bar of air. C balance (-), TOC (□).Table 1. HDO oxidation over ZrO2 supported Pt, Au, Pd, Pt-Au and Pd-Au. Reaction conditions: 0.1 M HDO, HDO/metal = 100, 70°C, 40 bar air, 48 h.Au/PtConv.Yield (%)Cata (Au/Pd) (%)ALDHAAADAPt-10020080AuPt0.1610000087AuPt0.4210000084AuPt0.7710000097AuPt0.910000096AuPt1.6610000096AuPt6.478532324Au-170603AuPd0.15100020162AuPd0.5895020065AuPd0.9610009081AuPd1.1210005082AuPd3.7855025013Pd-44121615HDO conversion and yields of the different products over the mono- and bimetallic catalysts containing different Au/Pt and Au/Pd ratios after 48 h are gathered in Table 1. Monometallic 3.1%Pd/ZrO2 and 3.6%Au/ZrO2 in the absence of a base were poorly active for oxidation (44% and 17% conversion after 48 h, respectively). Upon addition of Au to Pt and with increasing the Au content of the Au-Pt catalysts, the final yield of diacid increased progressively from 80% to a large maximum of 96-97% with a Au/Pt molar ratio in the range 0.8-1.7. The activity then dropped drastically and HDO conversion was even not total for Au/Pt = 6.4. The addition of Au to Pd and formation of the alloy also significantly improved the performances of the Pd catalyst. The maximum yield of DA was also observed for a Au/Pd ratio of ca. 1. However, the Au-Pd catalysts were less active than the Au-Pt catalysts; after 48 h of reaction, conversion of all intermediates was not complete. However, a higher temperature of 90°C used for Au-Pd/ZrO2 (Au/Pd ca. 1) yielded 96% DA. Comparison of the evolution of the selectivity to the different intermediates as a function of conversion shows different relative reaction rates for the different consecutive steps to DA (Scheme 1).4. Conclusions Pd-Au/ZrO2 and Pt-Au/ZrO2 prepared by a simple preparation procedure were performant catalysts for 1,6-hexanediol oxidation in non-alkaline aqueous medium. The optimization of the catalyst composition showed that adipic acid yield was the highest (96%) at Au/Pd and Au/Pt molar ratio of ca. 1 at 90°C over Pd-Au/ZrO2 and at 70°C over Pt-Au/ZrO2.References 1.S. Van de Vyver, Y. RomĂ n-Leshkov, Catal. Sci. Technol. 3 (2013) 1467-1479.2.J.G. de Vries, T. Buntara, P. Huat Phua, I.V. Melian Cabrera, H.J. Heeres, WO2011/149339 (2011). 3.S. P. Burt, K. J. Barnett, D. J. McClelland, P. Wolf, J. A. Dumesic, G. W. Huber, I. Hermans, Green Chem. 19 (2017) 1390.4.M. S. Ide, R. J. Davis, J. Catal. 308 (2013) 50-59.5.E. Derrien, M. Mounguengui-Diallo, N. Perret, ́ P. Marion, C. Pinel, Michele Besson, Ind. Eng. Chem. Res. (2017) DOI: 10.1021/acs.iecr.7b01576.K. Heidkamp, M. Aytemir, K.-D. Vorlop, U. PrĂŒsse, Catal. Sci. Technol. 3 (2013) 2984-2992

    Oxidation of diols in aqueous solution over supported- Pt, Pt-Au and Pd-Au catalysts: influence of chain length of diol and of catalyst composition

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBEInternational audienceSelective oxidation with air of -diols to hydroxyl-carboxylic acids and diacids over heterogeneous catalysts is a green attractive route for the production of polymers [1]. Noble metals are commonly used for this reaction [2] and the composition of the catalyst may affect the reaction rate, the reaction pathway and thus the final yields. Moreover, the carbon number of diol could also have an influence. The objectives of this study were to compare monometallic Pt/ZrO2 and bimetallic Pt-Au/ZrO2 and Pd-Au/ZrO2 catalysts for oxidation of C4-C6 aliphatic diols.The series of catalysts were prepared by wet-impregnation of ZrO2 (109 m2 g-1) with aqueous solution of metallic salts and NaBH4 reduction [3]. XRD patterns (Fig. 1) show Pt particles sizes of ca ~ 7 nm over monoclinic ZrO2; AuPt and AuPd alloys were formed over Pt-Au/ZrO2 and Pd-Au/ZrO2 materials with particles of ca ~ 5 nm, as confirmed by TEM analysis. The composition of the alloys by XRD were close to the nominal Au/Pt and Au/Pd ratios of 1 of the solids.Oxidation reactions of diols (1,4-butanediol BDO, 1,5-pentanediol PDO and 1,6-hexanediol HDO) were performed in a 300 mL batch reactor (0.1 M diol in water) under 40 bar air at 70°C or 90°C. Liquid samples of the reaction medium were regularly collected and analysed by HPLC and for Total Organic Carbon TOC.Conversion of the diol was very rapid and the reaction was sequential via the corresponding hydroxy-aldehyde (ALD), hydroxy-acid (HA), aldehyde-acid (AA) and diacid (DA) (Scheme 1). During oxidation of BDO, cyclization reactions took place and formed -butyrolactone (GBL), which was poorly reactive.Regardless of the nature of the catalyst, the rate of oxidation of the diol decreased withdecreasing chain length; the order of rate was Pt > Pt-Au > Pd-Au. Moreover, the productsdistribution at similar conversion (50-60%) was different according to the catalyst (Table 1).Theinitial selectivity to ALD was high over Pt and the oxidation of the aldehyde group took placesmoothly; in contrast, over Pd-Au ALD was very rapidly converted to HA, which wasconsequently formed with high initial selectivity.Under the same reaction conditions after 48 h of reaction, the yield of DA increased with thechain length. The Au-Pt catalyst yielded 66% succinic acid, 81% glutaric acid, and 96% adipicacid (Table 1). Reactions performed at 90°C improved the yield of DA over Pd-Au catalyst to97% after 48 h and greatly accelerated oxidation of BDO over Pt-Au.In conclusion, Pt/ZrO2 catalyst is active for oxidation of diols to the diacids. The use of bimetalliccatalysts allowed to improve the final yield of DA. By adjusting the operating conditions, onecan obtain very selectively the desired acid

    Investigations on the durability of several Congo basin wood species

    No full text
    International audienceThe sawdust of ten wood species was studied to assess their natural resistance to decay. The extractives and lignin contents were primarily determined (between 2.7-16.0% and 26.8-35.9% respectively) to give an overview of the chemical distribution. Then, a phytochemical screening (colorimetric methods) characterized the different chemical functional groups in all extracts studied. Antioxidant activity indicated values comprised between 18 and 175 ”mol AAE/”g of extract correlated to total phenolic content which were comprised between 51 and 935 mg eq. of gallic acid/g of extract. The resistance to decay of extracted and unextracted sawdust against the two white-rot fungi was evaluated and showed that extractives amounts and compositions partially influenced wood durability

    Oxydation catalytique de diols et triols biosourcés en diacides surcatalyseurs mono et bimétalliques Pt/ZrO2, Pt-Au/ZrO2 et Pd-Au/ZrO2

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBENational audienceLa substitution partielle des dĂ©rivĂ©s de la pĂ©trochimie par ceux issus de la biomasse lignocellulosique abondante est un des grands enjeux actuels. Dans cette dĂ©marche de dĂ©veloppement durable, la production de synthons polyols partiellement hydroxylĂ©s, en particulier les -diols, pour la synthĂšse de polymĂšres biosourcĂ©s devient rĂ©aliste [1]. Dans ce travail, nous avons Ă©tudiĂ© l’oxydation catalytique par l’air en phase aqueuse des diols C4-C6 (butane-1,4-diol « BDO», pentane-1,5-diol «PDO» et hexane-1,6-diol «HDO») et d’un triol (l’hexane-1,2,6-triol «HTO») en diacides (DA) correspondants sur des catalyseurs Pt, Pt-Au et Pd-Au supportĂ©s sur zircone. Ces catalyseurs aux mĂ©taux nobles supportĂ©s sont particuliĂšrement intĂ©ressants pour cette rĂ©action et l’utilisation de systĂšmes bimĂ©talliques permet de s’affranchir de l’utilisation de base soluble [2].La caractĂ©risation des catalyseurs prĂ©parĂ©s par imprĂ©gnation voie humide et rĂ©duction par NaBH4 (DRX, MET, EDX, XPS) a mis en Ă©vidence la formation d’alliage AuPt et AuPd [3]. La rĂ©action est rĂ©alisĂ©e dans un rĂ©acteur batch avec 0.1 M de substrat dans l’eau sous 40 bar d’air Ă  70°C ou 90°C. Les prĂ©lĂšvements liquides au cours de la rĂ©action sont analysĂ©s par HPLC.La conversion du diol est trĂšs rapide et la rĂ©action jusqu’au diacide a lieu de façon sĂ©quentielle ; l’une des fonctions alcool est oxydĂ©e en acide (HA), via l’aldĂ©hyde (ALD), puis la deuxiĂšme fonction alcool est oxydĂ©e via l’aldĂ©hyde acide (AA) (Figure 1). Dans le cas du BDO, la -butyrolactone (GBL) est Ă©galement observĂ©e comme intermĂ©diaire. Dans les mĂȘmes conditions, aprĂšs 48 h Ă  70°C, le rendement en DA augmente avec la longueur de chaine du diol (Figure 2). Le catalyseur Pt-Au/ZrO2 (Au/Pt at. ~1) est le plus efficace (rendements en acides adipique, glutarique, et succinique de 96%, 81%, et 66% aprĂšs 48 h). Une tempĂ©rature de 90°C, d’une part accĂ©lĂšre la conversion des intermĂ©diaires sur Au-Pd (rendement de 97% aprĂšs 48 h), et d’autre part accĂ©lĂšre la vitesse d’oxydation de la GBL peu rĂ©active jusqu’à un rendement en acide succinique de 80%. La prĂ©sence d’une fonction hydroxyle dans HTO rĂ©duit fortement l’activitĂ© des catalyseurs dans cette rĂ©action. En conclusion, les catalyseurs Pt-Au et Pd-Au supportĂ©s convertissent les diols dĂ©rivĂ©s de la biomasse en diacides pour la synthĂšse de biopolymĂšres avec de trĂšs bons rendements

    Oxydation catalytique de diols et triols biosourcés en diacides surcatalyseurs mono et bimétalliques Pt/ZrO2, Pt-Au/ZrO2 et Pd-Au/ZrO2

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBEInternational audienceLa substitution partielle des dĂ©rivĂ©s de la pĂ©trochimie par ceux issus de la biomasselignocellulosique abondante est un des grands enjeux actuels. Dans cette dĂ©marche dedĂ©veloppement durable, la production de synthons polyols partiellement hydroxylĂ©s, en particulierles -diols, pour la synthĂšse de polymĂšres biosourcĂ©s devient rĂ©aliste [1]. Dans ce travail, nousavons Ă©tudiĂ© l’oxydation catalytique par l’air en phase aqueuse des diols C4-C6 (butane-1,4-diol« BDO», pentane-1,5-diol «PDO» et hexane-1,6-diol «HDO») et d’un triol (l’hexane-1,2,6-triol«HTO») en diacides (DA) correspondants sur des catalyseurs Pt, Pt-Au et Pd-Au supportĂ©s surzircone. Ces catalyseurs aux mĂ©taux nobles supportĂ©s sont particuliĂšrement intĂ©ressants pourcette rĂ©action et l’utilisation de systĂšmes bimĂ©talliques permet de s’affranchir de l’utilisation debase soluble [2].La caractĂ©risation des catalyseurs prĂ©parĂ©s par imprĂ©gnation voie humide et rĂ©duction par NaBH4(DRX, MET, EDX, XPS) a mis en Ă©vidence la formation d’alliage AuPt et AuPd [3]. La rĂ©action estrĂ©alisĂ©e dans un rĂ©acteur batch avec 0.1 M de substrat dans l’eau sous 40 bar d’air Ă  70°C ou90°C. Les prĂ©lĂšvements liquides au cours de la rĂ©action sont analysĂ©s par HPLC.La conversion du diol est trĂšs rapide et larĂ©action jusqu’au diacide a lieu de façonsĂ©quentielle ; l’une des fonctions alcool estoxydĂ©e en acide (HA), via l’aldĂ©hyde (ALD), puisla deuxiĂšme fonction alcool est oxydĂ©e vial’aldĂ©hyde acide (AA) (Figure 1). Dans le cas duBDO, la -butyrolactone (GBL) est Ă©galementobservĂ©e comme intermĂ©diaire.Dans les mĂȘmes conditions, aprĂšs 48 h Ă  70°C,le rendement en DA augmente avec la longueurde chaine du diol (Figure 2). Le catalyseur Pt-Au/ZrO2 (Au/Pt at. ~1) est le plus efficace(rendements en acides adipique, glutarique, etsuccinique de 96%, 81%, et 66% aprĂšs 48 h).Une tempĂ©rature de 90°C, d’une part accĂ©lĂšre laconversion des intermĂ©diaires sur Au-Pd(rendement de 97% aprĂšs 48 h), et d’autre partaccĂ©lĂšre la vitesse d’oxydation de la GBL peurĂ©active jusqu’à un rendement en acidesuccinique de 80%.La prĂ©sence d’une fonction hydroxyle dans HTOrĂ©duit fortement l’activitĂ© des catalyseurs danscette rĂ©action.En conclusion, les catalyseurs Pt-Au et Pd-AusupportĂ©s convertissent les diols dĂ©rivĂ©s de labiomasse en diacides pour la synthĂšse debiopolymĂšres avec de trĂšs bons rendements

    Oxidation of diols in aqueous solution over supported- Pt, Pt-Au and Pd-Au catalysts: influence of chain length of diol and of catalyst composition

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBEInternational audienceSelective oxidation with air of ïĄï€Źï·-diols to hydroxyl-carboxylic acids and diacids over heterogeneous catalysts is a green attractive route for the production of polymers [1]. Noble metals are commonly used for this reaction [2] and the composition of the catalyst may affect the reaction rate, the reaction pathway and thus the final yields. Moreover, the carbon number of diol could also have an influence. The objectives of this study were to compare monometallic Pt/ZrO2 and bimetallic Pt-Au/ZrO2 and Pd-Au/ZrO2 catalysts for oxidation of C4-C6 aliphatic diols.The series of catalysts were prepared by wet-impregnation of ZrO2 (109 m2 g-1) with aqueous solution of metallic salts and NaBH4 reduction [3]. XRD patterns (Fig. 1) show Pt particles sizes of ca ~ 7 nm over monoclinic ZrO2; AuPt and AuPd alloys were formed over Pt-Au/ZrO2 and Pd-Au/ZrO2 materials with particles of ca ~ 5 nm, as confirmed by TEM analysis. The composition of the alloys by XRD were close to the nominal Au/Pt and Au/Pd ratios of 1 of the solids.Oxidation reactions of diols (1,4-butanediol BDO, 1,5-pentanediol PDO and 1,6-hexanediol HDO) were performed in a 300 mL batch reactor (0.1 M diol in water) under 40 bar air at 70°C or 90°C. Liquid samples of the reaction medium were regularly collected and analysed by HPLC and for Total Organic Carbon TOC.Conversion of the diol was very rapid and the reaction was sequential via the corresponding hydroxy-aldehyde (ALD), hydroxy-acid (HA), aldehyde-acid (AA) and diacid (DA) (Scheme 1). During oxidation of BDO, cyclization reactions took place and formed -butyrolactone (GBL), which was poorly reactive.Regardless of the nature of the catalyst, the rate of oxidation of the diol decreased withdecreasing chain length; the order of rate was Pt > Pt-Au > Pd-Au. Moreover, the productsdistribution at similar conversion (50-60%) was different according to the catalyst (Table 1).Theinitial selectivity to ALD was high over Pt and the oxidation of the aldehyde group took placesmoothly; in contrast, over Pd-Au ALD was very rapidly converted to HA, which wasconsequently formed with high initial selectivity.Under the same reaction conditions after 48 h of reaction, the yield of DA increased with thechain length. The Au-Pt catalyst yielded 66% succinic acid, 81% glutaric acid, and 96% adipicacid (Table 1). Reactions performed at 90°C improved the yield of DA over Pd-Au catalyst to97% after 48 h and greatly accelerated oxidation of BDO over Pt-Au.In conclusion, Pt/ZrO2 catalyst is active for oxidation of diols to the diacids. The use of bimetalliccatalysts allowed to improve the final yield of DA. By adjusting the operating conditions, onecan obtain very selectively the desired acid

    Klebsiella Pneumoniae Communiy-Acquired Pneumonia in a Trisomic at Omar Bongo Ondimba's Army Instruction Hospital (HIA OBO)

    No full text
    Kp community-acquired pneumonia is rarely encountered. Its prevalence is higher in Asia, where a higher strain virulence was demonstrated [1,2]. It’s a pyo-pneumothorax, which usually occurs on debilitated or&nbsp; immuno-compromised patients. It is a severe disease&nbsp;associated with high mortality. Here, we report the observation of a Kp community-acquired pneumonia occurring in a genetic disorder context.</p

    Oxydation catalytique de diols et triols biosourcés en diacides surcatalyseurs mono et bimétalliques Pt/ZrO2, Pt-Au/ZrO2 et Pd-Au/ZrO2

    No full text
    SSCI-VIDE+CDFA+MMG:NPR:CPI:MBEInternational audienceLa substitution partielle des dĂ©rivĂ©s de la pĂ©trochimie par ceux issus de la biomasselignocellulosique abondante est un des grands enjeux actuels. Dans cette dĂ©marche dedĂ©veloppement durable, la production de synthons polyols partiellement hydroxylĂ©s, en particulierles ïĄï€Źï·-diols, pour la synthĂšse de polymĂšres biosourcĂ©s devient rĂ©aliste [1]. Dans ce travail, nousavons Ă©tudiĂ© l’oxydation catalytique par l’air en phase aqueuse des diols C4-C6 (butane-1,4-diol« BDO», pentane-1,5-diol «PDO» et hexane-1,6-diol «HDO») et d’un triol (l’hexane-1,2,6-triol«HTO») en diacides (DA) correspondants sur des catalyseurs Pt, Pt-Au et Pd-Au supportĂ©s surzircone. Ces catalyseurs aux mĂ©taux nobles supportĂ©s sont particuliĂšrement intĂ©ressants pourcette rĂ©action et l’utilisation de systĂšmes bimĂ©talliques permet de s’affranchir de l’utilisation debase soluble [2].La caractĂ©risation des catalyseurs prĂ©parĂ©s par imprĂ©gnation voie humide et rĂ©duction par NaBH4(DRX, MET, EDX, XPS) a mis en Ă©vidence la formation d’alliage AuPt et AuPd [3]. La rĂ©action estrĂ©alisĂ©e dans un rĂ©acteur batch avec 0.1 M de substrat dans l’eau sous 40 bar d’air Ă  70°C ou90°C. Les prĂ©lĂšvements liquides au cours de la rĂ©action sont analysĂ©s par HPLC.La conversion du diol est trĂšs rapide et larĂ©action jusqu’au diacide a lieu de façonsĂ©quentielle ; l’une des fonctions alcool estoxydĂ©e en acide (HA), via l’aldĂ©hyde (ALD), puisla deuxiĂšme fonction alcool est oxydĂ©e vial’aldĂ©hyde acide (AA) (Figure 1). Dans le cas duBDO, la -butyrolactone (GBL) est Ă©galementobservĂ©e comme intermĂ©diaire.Dans les mĂȘmes conditions, aprĂšs 48 h Ă  70°C,le rendement en DA augmente avec la longueurde chaine du diol (Figure 2). Le catalyseur Pt-Au/ZrO2 (Au/Pt at. ~1) est le plus efficace(rendements en acides adipique, glutarique, etsuccinique de 96%, 81%, et 66% aprĂšs 48 h).Une tempĂ©rature de 90°C, d’une part accĂ©lĂšre laconversion des intermĂ©diaires sur Au-Pd(rendement de 97% aprĂšs 48 h), et d’autre partaccĂ©lĂšre la vitesse d’oxydation de la GBL peurĂ©active jusqu’à un rendement en acidesuccinique de 80%.La prĂ©sence d’une fonction hydroxyle dans HTOrĂ©duit fortement l’activitĂ© des catalyseurs danscette rĂ©action.En conclusion, les catalyseurs Pt-Au et Pd-AusupportĂ©s convertissent les diols dĂ©rivĂ©s de labiomasse en diacides pour la synthĂšse debiopolymĂšres avec de trĂšs bons rendements
    corecore