4,452 research outputs found
MIMAC : Detection of low energy recoils for Dark Matter search
The MIMAC project is based on a matrix of Micro Time Projection Chambers
(micro-TPC) for Dark Matter search, filled with He3 or CF4 and using ionization
and tracks. The first measurement of the energy resolution of this micro-TPC is
presented as well as its low thresholdComment: Dark Energy and Dark Matter conference, Lyon : France (2008
The Morphospace of Consciousness
We construct a complexity-based morphospace to study systems-level properties
of conscious & intelligent systems. The axes of this space label 3 complexity
types: autonomous, cognitive & social. Given recent proposals to synthesize
consciousness, a generic complexity-based conceptualization provides a useful
framework for identifying defining features of conscious & synthetic systems.
Based on current clinical scales of consciousness that measure cognitive
awareness and wakefulness, we take a perspective on how contemporary
artificially intelligent machines & synthetically engineered life forms measure
on these scales. It turns out that awareness & wakefulness can be associated to
computational & autonomous complexity respectively. Subsequently, building on
insights from cognitive robotics, we examine the function that consciousness
serves, & argue the role of consciousness as an evolutionary game-theoretic
strategy. This makes the case for a third type of complexity for describing
consciousness: social complexity. Having identified these complexity types,
allows for a representation of both, biological & synthetic systems in a common
morphospace. A consequence of this classification is a taxonomy of possible
conscious machines. We identify four types of consciousness, based on
embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii)
group consciousness (resulting from group interactions), & (iv) simulated
consciousness (embodied by virtual agents within a simulated reality). This
taxonomy helps in the investigation of comparative signatures of consciousness
across domains, in order to highlight design principles necessary to engineer
conscious machines. This is particularly relevant in the light of recent
developments at the crossroads of cognitive neuroscience, biomedical
engineering, artificial intelligence & biomimetics.Comment: 23 pages, 3 figure
MIMAC : a micro-TPC detector for non-baryonic dark matter search
The MIMAC project is multi-chamber detector for Dark Matter search, aiming at
measuring both track and ionization with a matrix of micromegas micro-TPC
filled with He3 and CF4. Recent experimental results on the first measurements
of the Helium quenching factor at low energy (1 keV recoil) are presented.Comment: 7 pages, Proc of Dark Energy and Dark Matter conference, Lyon :
France (2008
MIMAC-He3 : MIcro-tpc MAtrix of Chambers of He3
The project of a micro-TPC matrix of chambers of He3 for direct detection of
non-baryonic dark matter is outlined. The privileged properties of He3 are
highlighted. The double detection (ionization - projection of tracks) will
assure the electron-recoil discrimination. The complementarity of MIMAC-He3 for
supersymmetric dark matter search with respect to other experiments is
illustrated. The modular character of the detector allows to have different
gases to get A-dependence. The pressure degreee of freedom gives the
possibility to work at high and low pressure. The low pressure regime gives the
possibility to get the directionality of the tracks. The first measurements of
ionization at very few keVs for He3 in He4 gas are described
An analysis method for time ordered data processing of Dark Matter experiments
The analysis of the time ordered data of Dark Matter experiments is becoming
more and more challenging with the increase of sensitivity in the ongoing and
forthcoming projects. Combined with the well-known level of background events,
this leads to a rather high level of pile-up in the data. Ionization,
scintillation as well as bolometric signals present common features in their
acquisition timeline: low frequency baselines, random gaussian noise, parasitic
noise and signal characterized by well-defined peaks. In particular, in the
case of long-lasting signals such as bolometric ones, the pile-up of events may
lead to an inaccurate reconstruction of the physical signal (misidentification
as well as fake events). We present a general method to detect and extract
signals in noisy data with a high pile-up rate and qe show that events from few
keV to hundreds of keV can be reconstructed in time ordered data presenting a
high pile-up rate. This method is based on an iterative detection and fitting
procedure combined with prior wavelet-based denoising of the data and baseline
subtraction. {We have tested this method on simulated data of the MACHe3
prototype experiment and shown that the iterative fitting procedure allows us
to recover the lowest energy events, of the order of a few keV, in the presence
of background signals from a few to hundreds of keV. Finally we applied this
method to the recent MACHe3 data to successfully measure the spectrum of
conversion electrons from Co57 source and also the spectrum of the background
cosmic muons
MIMAC-He3 : A Micro-TPC Matrix of Chambers of He3 for direct detection of Wimps
The project of a micro-TPC matrix of chambers of \hetrois for direct
detection of non-baryonic dark matter is presented. The privileged properties
of He3 are highlighted. The double detection (ionization - projection of
tracks) is explained and its rejection evaluated. The potentialities of
MIMAC-He3 for supersymmetric dark matter search are discussed.Comment: to appear in Proc. of the 9th International Conference on Topics in
Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Sept. 200
Design of a horizontal neutron reflectometer for the European Spallation Source
A design study of a horizontal neutron reflectometer adapted to the general
baseline of the long pulse European Spallation Source (ESS) is presented. The
instrument layout comprises solutions for the neutron guide, high-resolution
pulse shaping and beam bending onto a sample surface being so far unique in the
field of reflectometry. The length of this instrument is roughly 55 m, enabling
resolutions from 0.5% to 10%. The incident beam is
focussed in horizontal plane to boost measurements of sample sizes of 1*1
cm{^2} and smaller with potential beam deflection in both downward and upward
direction. The range of neutron wavelengths untilized by the instrument is 2 to
7.1 (12.2, ...) {\AA}, if every (second, ...) neutron source ulse is used.
Angles of incidence can be set between 0{\deg} and 9{\deg} with a total
accessible q-range from 4*10^{-3} {\AA}^{-1} up to 1 {\AA}^{-1}. The instrument
operates both in {\theta}/{\theta} (free liquid surfaces) and
{\theta}/2{\theta} (solid/liquid, air/solid interfaces) geometry. The
experimental setup will in particular enable direct studies on ultrathin films
(d ~ 10 {\AA}) and buried monolayers to multilayered structures of up to 3000
{\AA} total thickness. The horizontal reflectometer will further foster
investigations of hierarchical systems from nanometer to micrometer length
scale, as well as their kinetics and dynamical properties, in particular under
load (shear, pressure, external fields). Polarization and polarization analysis
as well as the GISANS option are designed as potential modules to be
implemented separately in the generic instrument layout. The instrument is
highly flexible and offers a variety of different measurement modes. With
respect to its mechanical components the instrument is exclusively based on
current technology. Risks of failure for the chosen setup are minimum.Comment: Matched to the version submitted to Nuclear Instruments and Methods
Reflexion M\"ossbauer analysis of the in situ oxidation products hydroxycarbonate green rust
The purpose of this study is to determine the nature of the oxidation
products of FeII-III hydroxycarbonate FeII4FeIII2(OH)12CO3~3H2O (green rust
GR(CO32-)) by using the miniaturised M\"ossbauer spectrometer MIMOS II. Two
M\"ossbauer measurements methods are used: method (i) with green rust pastes
coated with glycerol and spread into Plexiglas sample holders, and method (ii)
with green rust pastes in the same sample holders but introduced into a
gas-tight cell with a beryllium window under a continuous nitrogen flow. Method
(ii) allows us to follow the continuous deprotonation of GR(CO32-) into the
fully ferric deprotonated form FeIII6O4(OH)8CO3~3H2O by adding the correct
amount of H2O2, without any further oxidation or degradation of the samples
- …
