89 research outputs found

    Characterisation of Site Effects by Means of Energy Spectra

    Get PDF
    The effects of subsoil conditions on surface ground motion are evaluated in terms of energy spectra. Near-field and far-field strong ground motion recorded during recent destructive earthquakes at nearby rock and soil sites characterized by a comprehensive knowledge of the geotecbnical properties are considered. The study suggests that energy spectra at soil sites are amplified with respect to those on rock sites. The maximum spectral amplification is usually well correlated to the natural periods of the sites. The most striking difference between traditional response spectra and energy spectra is the high soil amplification at longer periods, which is not apparent from the consideration of response spectra only

    The psychosexual profile of sexual assistants: an internet-based explorative study

    Get PDF
    Sexual assistance may have some aspects that resemble prostitution and others that might lead one to think of sexual assistants as similar to a group of subjects whose sexual object is disability (devotees). In this study, we investigate whether a rigorous selection and training process on the part of specialised organisations may reduce the risk of training subjects with an atypical sexual interest and behaviours resembling prostitution

    The Sexual Long COVID (SLC): Erectile Dysfunction as a Biomarker of Systemic Complications for COVID-19 Long Haulers

    Get PDF
    Introduction: Long term complications of COVID-19, the disease caused by the SARS-CoV-2, involve many organ systems, dramatically worsening the quality of life, and finally contributing to impaired physical functioning. Despite the presence of well-identified pathogenetic mechanisms, the effect of "Long COVID" on sexual health has been only marginally addressed. Objectives: To provide coverage of the current literature on long COVID, its epidemiology, pathophysiology, and relevance for erectile function. Methods: Comprehensive review of literature pertaining to the epidemiology and pathophysiology of long COVID, and its relevance for erectile function. Results: Symptoms of long COVID are highly prevalent and involve almost all systems of the human body, with a plethora of clinical manifestations which range from minor nuisances to life-threatening conditions. "Brain fog" and fatigue are the most common complaints, although other neuropsychiatric complications, including sensory dysfunctions, anxiety, depression, and cerebrovascular events have also been reported. The respiratory and cardiovascular systems are also affected, with dyspnea, pulmonary fibrosis, endothelial dysfunction, and myocarditis occurring in some COVID long haulers. A subset of patients might develop endocrine manifestations, including onset of diabetes, thyroid dysfunction, and hypogonadism. Overall, long COVID features many complications which can impair erectile function by multiple pathogenetic mechanisms, and which could require tailored treatment: (i) careful investigation and management from the sexual medicine expert are therefore much needed, (ii) and future research on this topic is warranted. Conclusion: in COVID-19 long haulers, several complications can adversely affect erectile function which, upon future tailored studies, could be used as biomarker for the severity of the long COVID disease and for its follow-up. Sansone A, Mollaioli D, Limoncin E et al. The Sexual Long COVID (SLC): Erectile Dysfunction as a Biomarker of Systemic Complications for COVID-19 Long Haulers. Sex Med Rev 2021;XX:XXX-XXX

    Recorded Motions of the Mw6.3 April 6, 2009 L’Aquila (Italy) Earthquake and Implications for Building Structural Damage: Overview.

    Get PDF
    The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuriesold buildings of significant cultural importance and to modern reinforcedconcrete- framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of shortduration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforcedconcrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures.Published651-6844.1. Metodologie sismologiche per l'ingegneria sismicaJCR Journalreserve

    Seismic assessment of a heavy-timber frame structure with ring-doweled moment-resisting connections

    Get PDF
    The performance of heavy-timber structures in earthquakes depends strongly on the inelastic behavior of the mechanical connections. Nevertheless, the nonlinear behavior of timber structures is only considered in the design phase indirectly through the use of an R-factor or a q-factor, which reduces the seismic elastic response spectrum. To improve the estimation of this, the seismic performance of a three-story building designed with ring-doweled moment resisting connections is analyzed here. Connections and members were designed to fulfill the seismic detailing requirements present in Eurocode 5 and Eurocode 8 for high ductility class structures. The performance of the structure is evaluated through a probabilistic approach, which accounts for uncertainties in mechanical properties of members and connections. Nonlinear static analyses and multi-record incremental dynamic analyses were performed to characterize the q-factor and develop fragility curves for different damage levels. The results indicate that the detailing requirements of Eurocode 5 and Eurocode 8 are sufficient to achieve the required performance, even though they also indicate that these requirements may be optimized to achieve more cost-effective connections and members. From the obtained fragility curves, it was verified that neglecting modeling uncertainties may lead to overestimation of the collapse capacity

    Semi-empirical relationships to assess the seismic performance of slopes from an updated version of the Italian seismic database

    Get PDF
    Funder: Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri; doi: http://dx.doi.org/10.13039/100012783; Grant(s): ReLUIS research project - Working Pachage 16: Geotechnical Engineering - Task Group 2: Slope stabilityAbstractSeismic performance of slopes can be assessed through displacement-based procedures where earthquake-induced displacements are usually computed following Newmark-type calculations. These can be adopted to perform a parametric integration of earthquake records to evaluate permanent displacements for different slope characteristics and seismic input properties. Several semi-empirical relationships can be obtained for different purposes: obtaining site-specific displacement hazard curves following a fully-probabilistic approach, to assess the seismic risk associated with the slope; providing semi-empirical models within a deterministic framework, where the seismic-induced permanent displacement is compared with threshold values related to different levels of seismic performance; calibrating the seismic coefficient to be used in pseudo-static calculations, where a safety factor against limit conditions is computed. In this paper, semi-empirical relationships are obtained as a result of a parametric integration of an updated version of the Italian strong-motion database, that, in turn, is described and compared to older versions of the database and to well-known ground motion prediction equations. Permanent displacement is expressed as a function of either ground motion parameters, for a given yield seismic coefficient of the slope, or of both ground motion parameters and the seismic coefficient. The first are meant to be used as a tool to develop site-specific displacement hazard curves, while the last can be used to evaluate earthquake-induced slope displacements, as well as to calibrate the seismic coefficient to be used in a pseudo-static analysis. Influence of the vertical component of seismic motion on these semi-empirical relationships is also assessed.</jats:p

    Strength and stiffness reduction factors for infilled frames with openings

    No full text
    Framed structures are usually infilled with masonry walls. These may cause significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects, like for example soft storey mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been investigated adequately. In the present study the effect of openings on strength and stiffness of infilled frames is studied by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of application of the proposed reduction factors is also presented

    Sexual Distress in Obesity

    No full text
    corecore