113 research outputs found

    Collective effects in charge transfer within a hybrid organic-inorganic system

    Full text link
    A collective electron transfer (ET) process was discovered by studying the current noise in a field effect transistor with light-sensitive gate formed by nanocrystals linked by organic molecules to its surface. Fluctuations in the ET through the organic linker are reflected in the fluctuations of the transistor conductivity. The current noise has an avalanche character. Critical exponents obtained from the noise power spectra, avalanche distributions, and the dependence of the average avalanche size on avalanche duration are consistent with each other. A plausible model is proposed for this phenomenonComment: 15 pages 4 figures. Accepted for publication in Physical Review Letter

    Observation of compositional domains within individual copper indium sulfide quantum dots

    Get PDF
    The origin of photoluminescence in copper indium sulfide (CIS) quantum dots (Qdots) has previously been ascribed to a donor-acceptor pair (DAP) recombination, with a crystal lattice defect implicated as the origin of the donor state. In this study, electron energy-loss spectroscopy (EELS) was used to observe defect-rich compositional domains within individual CIS Qdots, supporting a model of defect-state-mediated photoluminescence for these particles, and identifying them as an ideal model system for future study of lattice defects on Qdot properties

    Clinical trials report

    No full text

    Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots

    No full text
    Carrier (exciton) multiplication in colloidal InAs/CdSe/ZnSe core-shell quantum dots (QDs) is investigated using terahertz time-domain spectroscopy, time-resolved transient absorption, and quasi-continuous wave excitation spectroscopy. For excitation by high-energy photons (~2.7 times the band gap energy), highly efficient carrier multiplication (CM) results in the appearance of multi-excitons, amounting to ~1.6 excitons per absorbed photon. Multi-exciton recombination occurs within tens of picoseconds via Auger-type processes. Photodoping (i.e., photoinjection of an exciton) of the QDs prior to excitation results in a reduction of the CM efficiency to ~1.3. This exciton-induced reduction of CM efficiency can be explained by the twofold degeneracy of the lowest conduction band energy level. We discuss the implications of our findings for the potential application of InAs QDs as light absorbers in solar cells

    Addition/Correction: Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots

    No full text
    In our earlier paper, we reported carrier multiplication (CM) in colloidal InAs quantum dots (QDs) and CM in dots with a pre-population of one exciton. The occurrence of CM in relaxed InAs QDs was concluded from the results of time-resolved TeraHertz (THz). Both THz and quasi-continuous wave (quasi-CW) experiments were performed to study the CM in pre-excited dots. Recent attempts to reproduce the observations of CM using THz spectroscopy on InAs based QDs of two sizes were unsuccessful. These attempts followed transient absorption measurements in Jerusalem by one of us (S. R.) and co-workers reported elsewhere, which have not yielded evidence for CM in these QDs

    Carrier Multiplication and Its Reduction by Photodoping in Colloidal InAs Quantum Dots

    Get PDF
    Carrier (exciton) multiplication in colloidal InAs/CdSe/ZnSe core−shell quantum dots (QDs) is investigated using terahertz time-domain spectroscopy, time-resolved transient absorption, and quasi-continuous wave excitation spectroscopy. For excitation by high-energy photons (2.7 times the band gap energy), highly efficient carrier multiplication (CM) results in the appearance of multi-excitons, amounting to 1.6 excitons per absorbed photon. Multi-exciton recombination occurs within tens of picoseconds via Auger-type processes. Photodoping (i.e., photoinjection of an exciton) of the QDs prior to excitation results in a reduction of the CM efficiency to 1.3. This exciton-induced reduction of CM efficiency can be explained by the twofold degeneracy of the lowest conduction band energy level. We discuss the implications of our findings for the potential application of InAs QDs as light absorbers in solar cells. \u

    The Nanoscience Paradigm: “Size Matters!”

    No full text
    The essential feature of nanomaterials is that their physical and chemical properties are size dependent, making it possible to engineer the material properties not only by defining its chemical composition, but also by tailoring the size and shape of the nanostructures, and the way in which individual building blocks are assembled. This chapter addresses the origin of the size dependence of the properties of nanomaterials, which can be traced to two fundamental nanoscale effects: (a) the increase in the surface/volume ratio with decreasing size, and (b) spatial confinement effects. Furthermore, the definition and classification of nanomaterials is introduced, and the techniques used to fabricate and study them are briefly discussed, with emphasis on nanoparticles of inorganic materials
    corecore