1,171 research outputs found

    Damping of a nanomechanical oscillator strongly coupled to a quantum dot

    Full text link
    We present theoretical and experimental results on the mechanical damping of an atomic force microscope cantilever strongly coupled to a self-assembled InAs quantum dot. When the cantilever oscillation amplitude is large, its motion dominates the charge dynamics of the dot which in turn leads to nonlinear, amplitude-dependent damping of the cantilever. We observe highly asymmetric lineshapes of Coulomb blockade peaks in the damping that reflect the degeneracy of energy levels on the dot, in excellent agreement with our strong coupling theory. Furthermore, we predict that excited state spectroscopy is possible by studying the damping versus oscillation amplitude, in analogy to varying the amplitude of an ac gate voltage.Comment: 4+ pages, 4 figure

    Magnetization plateaus of SrCu_2(BO_3)_2 from a Chern-Simons theory

    Full text link
    The antiferromagnetic Heisenberg model on the frustrated Shastry-Sutherland lattice is studied by a mapping onto spinless fermions carrying one quantum of statistical flux. Using a mean-field approximation these fermions populate the bands of a generalized Hofstadter problem. Their filling leads to the magnetization curve. For SrCu_2(BO_3)_2 we reproduce plateaus at 1/3 and 1/4 of the saturation moment and predict a new one at 1/2. Gaussian fluctuations are shown to be massive at these plateau values.Comment: 4 pages, 5 figure

    Unconventional magnetization plateaus in a Shastry-Sutherland spin tube

    Full text link
    Using density matrix renormalization group (DMRG) and perturbative continuous unitary transformations (PCUTs), we study the magnetization process in a magnetic field for all coupling strengths of a quasi-1D version of the 2D Shastry-Sutherland lattice, a frustrated spin tube made of two orthogonal dimer chains. At small inter-dimer coupling, plateaus in the magnetization appear at 1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal of triplons. However, close to the boundary of the product singlet phase, plateaus of a new type appear at 1/5 and 3/4. They are stabilized by the localization of {\it bound states} of triplons. Their magnetization profile differs significantly from that of single triplon plateaus and leads to specific NMR signatures. We address the possibility to stabilize such plateaus in further geometries by analyzing small finite clusters using exact diagonalizations and the PCUTs.Comment: Final version as published in EP

    Magnetization plateaux in the classical Shastry-Sutherland lattice

    Get PDF
    We investigated the classical Shastry-Sutherland lattice under an external magnetic field in order to understand the recently discovered magnetization plateaux in the rare-earth tetraborides compounds RB4_4. A detailed study of the role of thermal fluctuations was carried out by mean of classical spin waves theory and Monte-Carlo simulations. Magnetization quasi-plateaux were observed at 1/3 of the saturation magnetization at non zero temperature. We showed that the existence of these quasi-plateaux is due to an entropic selection of a particular collinear state. We also obtained a phase diagram that shows the domains of existence of different spin configurations in the magnetic field versus temperature plane.Comment: 4 pages, proceedings of HFM200

    Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study

    Full text link
    Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase transition in contrast to a discontinuous first order transition in the bulk. The character of the magnetic transition transforms with decreasing channel diameter, showing the decreasing critical exponent and transition temperature, however the latter turns out to be above the N\'eel temperature for the bulk. This enhancement is explained within the framework of Landau theory taking into consideration the ternary interaction of the magnetic and associated structural order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl

    Hole Dynamics in the Orthogonal-Dimer Spin System

    Full text link
    The dynamics of a doped hole in the orthogonal-dimer spin system is investigated systematically in one, two and three dimensions. By combining the bond-operator method with the self-consistent Born approximation, we argue that a dispersive quasi-particle state in the dimer phase is well defined even for quasi-two-dimensional systems. On the other hand, a doped hole in the plaquette-singlet phase hardly itinerates, forming an almost localized mode. We further clarify that although the quasi-particle weight in the dimer phase is decreased in the presence of the interchain coupling, it is not suppressed but even enhanced upon the introduction of the interlayer coupling.Comment: 8 pages, 10 figure

    Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet

    Full text link
    A rare example of a two dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it is probably the first genuinely two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations normally found only in one-dimensional systems. In some limits it decouples into non-interacting chains, purely dynamically and not because of weakening of interchain couplings: indeed, paradoxically, this happens in the limit of strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi

    High Resolution Study of Spin Excitations in the Shastry-Sutherland Singlet Ground State of SrCu2(BO3)2

    Full text link
    High resolution, inelastic neutron scattering measurements on SrCu2(BO3)2 reveal the dispersion of the three single triplet excitations continuously across the (H,0) direction within its tetragonal basal plane. These measurements also show distinct Q dependencies for the single and multiple triplet excitations, and that these excitations are largely dispersionless perpendicular to this plane. The temperature dependence of the intensities of these excitations is well described as the complement of the dc-susceptibility of SrCu2(BO3)2.Comment: 4 pages, 4 figures. Submitted to PR

    Energy levels of few electron quantum dots imaged and characterized by atomic force microscopy

    Full text link
    Strong confinement of charges in few electron systems such as in atoms, molecules and quantum dots leads to a spectrum of discrete energy levels that are often shared by several degenerate quantum states. Since the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum in the Coulomb blockade regime, resulting from a change in cantilever resonance frequency and dissipation during tunneling events, shows one by one electron charging of a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the first observation of predicted temperature-dependent shifts of Coulomb blockade peaks. Further, by scanning the surface we observe that several quantum dots may reside on what topologically appears to be just one. These images of grouped weakly and strongly coupled dots allow us to estimate their relative coupling strengths.Comment: 11 pages, 6 figure
    • …
    corecore