51 research outputs found

    Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA

    Get PDF
    Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such ‘rubble-pile’ asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3, although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith

    Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth

    Get PDF
    International audienceThe Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu’s boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of >5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid

    Transport Properties of EBCO Step Edge Josephson Junctions

    No full text
    • 

    corecore