157 research outputs found
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression.
BACKGROUND: Late-life depression (LLD) is associated with a decline in physical activity. Typically this is assessed by self-report questionnaires and, more recently, with actigraphy. We sought to explore the utility of a bespoke activity monitor to characterize activity profiles in LLD more precisely. METHOD: The activity monitor was worn for 7 days by 29 adults with LLD and 30 healthy controls. Subjects underwent neuropsychological assessment and quality of life (QoL) (36-item Short-Form Health Survey) and activities of daily living (ADL) scales (Instrumental Activities of Daily Living Scale) were administered. RESULTS: Physical activity was significantly reduced in LLD compared with controls (t = 3.63, p < 0.001), primarily in the morning. LLD subjects showed slower fine motor movements (t = 3.49, p < 0.001). In LLD patients, activity reductions were related to reduced ADL (r = 0.61, p < 0.001), lower QoL (r = 0.65, p < 0.001), associative learning (r = 0.40, p = 0.036), and higher Montgomery-Åsberg Depression Rating Scale score (r = -0.37, p < 0.05). CONCLUSIONS: Patients with LLD had a significant reduction in general physical activity compared with healthy controls. Assessment of specific activity parameters further revealed the correlates of impairments associated with LLD. Our study suggests that novel wearable technology has the potential to provide an objective way of monitoring real-world function.This study was funded by an award from the UK
Medical Research Council (G1001828/1)
Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas
Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data
Laser generated neutron source for neutron resonance spectroscopy
Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 17(10), 100701, 2010 and may be found at http://dx.doi.org/10.1063/1.348421
Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility
A 200 μm radius hot spot at more than 2 keV temperature, 1 g/cm[superscript 3] density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.United States. Dept. of Energy (Contract DE-AC52-07NA27344)Brookhaven National Laboratory (Laboratory Directed Research and Development Grant 11-ERD-050
First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10[superscript 15] neutrons, with 20% calculated alpha heating at convergence ~27×
Recommended from our members
Ultrafast, In Situ Probing of Shocked Solids at the Mesoscale and Beyond: A New Paradigm for Materials Dynamics
Understanding material response under dynamic conditions and extreme pressures at the lattice level is important for being able to generate predictive models of material response. Despite many decades of study, material behavior is primarily inferred from bulk measurements on dynamically loaded samples or the microstructure from recovery experiments and not determined from lattice level measurements made in-situ at the relevant length scale of the governing physics. In the work described here, we report on progress made in advancing this frontier with research conducted under LDRD 04-ERD-071. Specifically, we present advances in, and applications of, dynamic x-ray diffraction, Extended X-ray Absorption Fine Structure and dynamic transmission electron microscopy
Recommended from our members
Dynamic Response of Copper Subjected to Quasi-Isentropic, Gas-Gun Driven Loading
A transmission electron microscopy study of quasi-isentropic high-pressure loading (peak pressures between 18 GPa and 52 GPa) of polycrystalline and monocrystalline copper was carried out. Deformation mechanisms and defect substructures at different pressures were analyzed. Current evidence suggests a deformation substructure consisting of twinning at the higher pressures and heavily dislocated laths and dislocation cells at the intermediate and lower pressures, respectively. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact
Recommended from our members
Deformation Substructures and Their Transitions in Laser Shock-Compressed Copper-Aluminum Alloys
It is shown that the short pulse durations (0.1-10 ns) in laser shock compression ensure a rapid decay of the pulse and quenching of the shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Thus, laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length also decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt% Al) with orientations [001] and [{bar 1}34] were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in an initial pulse duration of approximately 3 ns. The [001] and [{bar 1}34] orientations were chosen since they respectively maximize and minimize the number of slip systems with highest resolved shear stresses. Systematic differences of the defect substructure were observed as a function of pressure, stacking-fault energy and crystalline orientation. The changes in the mechanical properties for each condition were compared using micro- and nano-hardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking-faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically-based criterion accounting for stacking-fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking-faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE
Future Opportunities for IoT to Support People with Parkinson’s
Recent years have seen an explosion of internet of things (IoT) technologies being released to the market. There has also been an emerging interest in the potentials of IoT devices to support people with chronic health conditions. In this paper, we describe the results of engagements to scope the future potentials of IoT for supporting people with Parkinson’s. We ran a 2-day multi-disciplinary event with professionals with expertise in Parkinson’s and IoT, to explore the opportunities, challenges and benefits. We then ran 4 workshops, engaging 13 people with Parkinson’s and caregivers, to scope out the needs, values and desires that the community has for utilizing IoT to monitor their symptoms. This work contributes a set of considerations for future IoT solutions that might support people with Parkinson’s in better understanding their condition, through the provision of objective measurements that correspond to their, currently unmeasured, subjective experiences
- …
