391 research outputs found
Low noise high performance 50nm T-gate metamorphic HEMT with cut-off frequency f<sub>T</sub> of 440 GHz for millimeterwave imaging receivers applications
The 50 nm m-HEMT exhibits extremely high f<sub>T</sub>, of 440GHz, low F<sub>min</sub> of 0.7 dB, associated gain of 13 dB at 26 GHz with an exceptionally high Id of 200 mA/mm and gm of 950 ms/mm at low noise biased point
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
© 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents”
A Discussion Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents
Self-aligned 0.12mm T-gate In.53Ga.47As/In.52Al.48As HEMT Technology Utilising a Non Annealed Ohmic Contact Strategy
An InGaAs/InAlAs based HEMT structure, lattice matched to an InP substrate, is presented in which drive current and transconductance has been optimized through a double-delta doping strategy. Together with an increase in channel carrier density, this allows the use of a non-annealed ohmic contact process. HEMT devices with 120 nm standard and self-aligned T-gates were fabricated using the non-annealed ohmic process. At DC, self-aligned and standard devices exhibited transconductances of up to 1480 and 1100 mS/mm respectively, while both demonstrated current densities in the range 800 mA/mm. At RF, a cutoff frequency f/sub T/ of 190 GHz was extracted for the self-aligned device. The DC characteristics of the standard devices were then calibrated and modelled using a compound semiconductor Monte Carlo device simulator. MC simulations provide insight into transport within the channel and illustrate benefits over a single delta doped structure
Behavioural Impact of Captive Management Changes in Three Species of Testudines
Reptile behaviour and welfare are understudied in comparison with mammals. In this study, behavioural data on three species (Astrochelys radiata, Stigmochelys pardalis, Aldabrachelys gigantea) of tortoises were recorded before and after an environmental change which was anticipated to be positive in nature. The environmental changes differed for each population, but included a substantial increase in enclosure size, the addition of substrate material, and a change in handling procedure. A tortoise-specific ethogram was created to standardise data collection. Focal behaviour sampling was used to collect behavioural data. Changes in the duration of performance of co-occupant interaction and object interaction in the leopard (Stigmochelys pardalis) and Aldabra (Aldabrachelys gigantea) tortoises were observed following the environmental changes. The Shannon–Weiner diversity index did not yield a significant increase after the changes but had a numerical increase which was relatively greater for the leopard tortoise group, which had experienced the greatest environmental change. The leopard tortoises also demonstrated changes in a greater number of behaviours compared to the other species, and this was sustained over the study period. However, this included a behaviour indicative of negative affect: aggression. Whilst we are unable to conclude that welfare was improved by the management changes, there are suggestions that behavioural diversity increased, and some promotion of positive social behaviours occurred.Jessica T. Turner, Alexandra L. Whittaker, and David McLellan
The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point
spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300
cm-1). Its primary purpose is to map the surface composition of the asteroid
Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission.
The information it returns will help guide the selection of the sample site. It
will also provide global context for the sample and high spatial resolution
spectra that can be related to spatially unresolved terrestrial observations of
asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W
average), and robust instrument with the sensitivity needed to detect a 5%
spectral absorption feature on a very dark surface (3% reflectance) in the
inner solar system (0.89-1.35 AU). It, in combination with the other
instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an
asteroid's surface.Comment: 14 figures, 3 tables, Space Science Reviews, submitte
Asymmetric effects of a modelled tidal turbine on the flow and seabed
The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused on flow asymmetry. Indeed, unusual wake behaviour and limits of turbine array efficiency have typically been attributed to boundary effects rather than the particular turbine geometry. The aim of the present study was to reveal the asymmetries in the hydrodynamic wake and the interactions with the sediment bed due to the presence of a hydrokinetic turbine. We combined: (i) computational fluid dynamics simulations; (ii) optical flow measurements from a series of flume experiments above a fixed rough bed; and (iii) acoustic measurements from a further series of flume experiments above a mobile sand bed. Results showed flow asymmetry due to the presence of the rotor which appeared to be related to the development of the wake and potentially to the gyre of the blades. Suspended sediments in the flume also exhibited asymmetrical characteristics due to the flow asymmetry. This imbalance in the flow field and sediment transport may decrease energy extraction efficiency in turbine arrays and also could have important environmental consequences
Relating the Flow Processes and Bedforms of Steady-State and Waning Density Currents
© Copyright© 2020 de Cala, Ohata, Dorrell, Naruse, Patacci, Amy, Simmons, McLelland and McCaffrey. The interaction between turbidity currents and mobile substrates can lead to the development of different types of bedforms. Although much research has been conducted on bedform development beneath open channel flows, research into bedform development beneath waning gravity currents is relatively rare. Analysis of density current-related bedform development has therefore relied upon open channel flow phase diagrams. We report on an experimental study designed to assess the development of bedforms under steady and waning saline density currents. The experimental density currents developed stepped density profiles in which a higher-density basal zone was separated from the ambient fluid by a zone of intermediate density; any bedforms that developed were contained within the bottom layer of the current. Under different conditions ripples, dunes, downstream migrating antidunes and long wavelength antidunes were observed to form and could be distinguished based on their interactions and phase relationships with the upper surface of the lower denser layer of the current. Due to limited mixing between the upper and lower layer of the current and maintenance of current momentum, currents set with slowing discharge flow rates maintained a steady flow velocity in the lower layer of the flow. As a result, sustained bedform formative conditions were achieved within this lower layer, while waning current conditions effected the rest of the flow. Under waning currents, it was seen how pre-existing bed states can determine the subsequent evolution of bedforms. This illustrates the limitations of existing phase diagrams as they do not account for trajectory or rate of passage of flows through different bedform phase spaces. In order to establish a reliable quantitative association between the flow regime and the type of bedform development, it is critical to adopt an appropriate Froude number calculation method for stratified flow. The updated density current phase diagram indicates supercritical flow can be achieved at lower flow velocities than for open channel flows due to the effects of reduced gravity. Bedform depositional structures found in outcrop and on the modern sea floor provide data that helps to interpret the hydrodynamic and sedimentological character of the current that formed them. Therefore, understanding the processes involved in bedform development beneath density currents will enable more accurate estimation of the properties of flows
Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model
© 2017 The Author(s) A tidal turbine simulation system is developed based on a three-dimensional oceanographic numerical model. Both the current and turbulent controlling equations are modified to account for impact of tidal turbines on water velocity and turbulence generation and dissipation. High resolution mesh size at the turbine location is assigned in order to capture the details of hydrodynamics due to the turbine operation. The system is tested against comprehensive measurements in a water flume experiment and results of Computational Fluid Dynamics (CFD) simulations. The validation results suggest that the new modelling system is proven to be able to accurately simulate hydrodynamics with the presence of turbines. The developed turbine simulation system is then applied to a series of test cases in which a standalone turbine is deployed. Here, complete velocity profiles and mixing are realized that could not have been produced in a standard two-dimensional treatment. Of particular interest in these cases is an observed accelerated flow near the bed in the wake of the turbine, leading to enhanced bottom shear stress (∼2 N/m 2 corresponding to the critical stress of a range of fine gravel and finer sediment particles)
- …