1,659 research outputs found
Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation
The food industry is one of the major users of emulsion technology, as many food products exist in an emulsified form, including many dressings, sauces, spreads, dips, creams, and beverages. Recently, there has been an interest in improving the healthiness, sustainability, and safety of foods in an attempt to address some of the negative effects associated with the modern food supply, such as rising chronic diseases, environmental damage, and food safety concerns. Advanced emulsion technologies can be used to address many of these concerns. In this review article, recent studies on the development and utilization of these advanced technologies are critically assessed, including nanoemulsions, high internal phase emulsions (HIPEs), Pickering emulsions, multilayer emulsions, solid lipid nanoparticles (SLNs), multiple emulsions, and emulgels. A brief description of each type of emulsion is given, then their formation and properties are described, and finally their potential applications in the food industry are presented. Special emphasis is given to the utilization of these advanced technologies for the delivery of bioactive compounds
Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime
The highly dynamical, complex nature of the solar atmosphere naturally
implies the presence of waves in a topologically varied magnetic environment.
Here, the interaction of waves with topological features such as null points is
inevitable and potentially important for energetics. The low resistivity of the
solar coronal plasma implies that non-MHD effects should be considered in
studies of magnetic energy release in this environment. This paper investigates
the role of the Hall term in the propagation and dissipation of waves, their
interaction with 2D magnetic X-points and the nature of the resulting
reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study
the evolution of an initial fast magnetoacoustic wave annulus for a range of
values of the ion skin depth in resistive Hall MHD. A magnetic null-point
finding algorithm is also used to locate and track the evolution of the
multiple null-points that are formed in the system. Depending on the ratio of
ion skin depth to system size, our model demonstrates that Hall effects can
play a key role in the wave-null interaction. In particular, the initial
fast-wave pulse now consists of whistler and ion-cyclotron components; the
dispersive nature of the whistler wave leads to (i) earlier interaction with
the null, (ii) the creation of multiple additional, transient nulls and, hence,
an increased number of energy release sites. In the Hall regime, the relevant
timescales (such as the onset of reconnection and the period of the oscillatory
relaxation) of the system are reduced significantly, and the reconnection rate
is enhanced.Comment: 13 pages, 10 figure
Murex medic field evaluation.
Trials: 90GE113, 90MO62, 90WH87, 90ME72, 90NO115, 90A24, 90AB17, 90AL35
Locations: Geraldton, New Norcia, Wongan Hills, Merredin, Southern Brook, Avondale, Katanning, Tenderden.
The selection SEP29.1 was outstanding for both dry matter production and seed yield over a wide range of sites varying in both rainfall and soil type. On the basis of these trials, six lines have been selected for further evaluation in 1991.
They are: SEP29.1 SEP26.2.7 GRC69 GRC87.1 87F01.28 87FB2.36
Trials 90A25 and 90NO116
Redlegged earthmite field experiments.
Very low levels of redlegged earthmite and only minor damage to test varieties was recorded in this trial. Damage ratings were recorded at 3, 4 and 5 weeks after sowing and plant yields at 3, 5 and 7 weeks, but the trial was then abandoned due to minimal responses.
90NO116 - This trial was abandoned soon after sowing due to massive germination of contaminant clover present in the paddock and negligible levels of redlegged earthmite
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
We study the non-thermal emissions in a solar flare occurring on 2003 May 29
by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This
flare shows several typical behaviors of the HXR and microwave emissions: time
delay of microwave peaks relative to HXR peaks, loop-top microwave and
footpoint HXR sources, and a harder electron energy distribution inferred from
the microwave spectrum than from the HXR spectrum. In addition, we found that
the time profile of the spectral index of the higher-energy (\gsim 100 keV)
HXRs is similar to that of the microwaves, and is delayed from that of the
lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms
of an electron transport model called {\TPP}. We numerically solved the
spatially-homogeneous {\FP} equation to determine electron evolution in energy
and pitch-angle space. By comparing the behaviors of the HXR and microwave
emissions predicted by the model with the observations, we discuss the
pitch-angle distribution of the electrons injected into the flare site. We
found that the observed spectral variations can qualitatively be explained if
the injected electrons have a pitch-angle distribution concentrated
perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical
Journa
Propagating EUV disturbances in the solar corona : two-wavelength observations
Quasi-periodic EUV disturbances simultaneously observed in 171 Å and 195 Å TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics
Recommended from our members
Inhibition of Droplet Growth in Model Beverage Emulsions Stabilized Using Poly (ethylene glycol) Alkyl Ether Surfactants Having Various Hydrophilic Head Sizes: Impact of Ester Gum
The effect of ester gum, a widely used weighting agent, on Ostwald ripening in model beverage emulsions formulated using different food-grade surfactants was examined. A microfluidizer was used to prepare 5% orange oil-in-water emulsions stabilized by a series of ethylene glycol alkyl ether surfactants. Emulsions prepared using only orange oil exhibited an appreciable increase in droplet size during a 14-day storage, independent of surfactant type or concentration. Incorporation of ester gum into the oil phase of the emulsions effectively inhibited droplet growth at concentrations ≥20%. The inhibition of droplet growth by ester gum depended on the surfactant type (hydrophilic group size) and concentration. Overall, ester gum stabilized the emulsions by acting as an Ostwald ripening inhibitor, as well as a weighting agent
Collisional damping rates for plasma waves
The distinction between the plasma dynamics dominated by collisional
transport versus collective processes has never been rigorously addressed until
recently. A recent paper [Yoon et al., Phys. Rev. E 93, 033203 (2016)]
formulates for the first time, a unified kinetic theory in which collective
processes and collisional dynamics are systematically incorporated from first
principles. One of the outcomes of such a formalism is the rigorous derivation
of collisional damping rates for Langmuir and ion-acoustic waves, which can be
contrasted to the heuristic customary approach. However, the results are given
only in formal mathematical expressions. The present Brief Communication
numerically evaluates the rigorous collisional damping rates by considering the
case of plasma particles with Maxwellian velocity distribution function so as
to assess the consequence of the rigorous formalism in a quantitative manner.
Comparison with the heuristic ("Spitzer") formula shows that the accurate
damping rates are much lower in magnitude than the conventional expression,
which implies that the traditional approach over-estimates the importance of
attenuation of plasma waves by collisional relaxation process. Such a finding
may have a wide applicability ranging from laboratory to space and
astrophysical plasmas.Comment: 5 pages, 2 figures; Published in Physics of Plasmas, volume/Issue
23/6. Publisher: AIP Publishing LLC. Date: Jun 1, 2016. URL:
http://aip.scitation.org/doi/10.1063/1.4953802 Rights managed by AIP
Publishing LL
- …