92 research outputs found

    Relevance of nonadiabatic effects in TiOCl

    Full text link
    We analyze the effect of the phonon dynamics on a recently proposed model for the uniform-incommensurate transition seen in TiOX compounds. The study is based on a recently developed formalism for nonadiabatic spin-Peierls systems based on bosonization and a mean field RPA approximation for the interchain coupling. To reproduce the measured low temperature spin gap, a spin-phonon coupling quite bigger than the one predicted from an adiabatic approach is required. This high value is compatible with the renormalization of the phonons in the high temperature phase seen in inelastic x-ray experiments. Our theory accounts for the temperature of the incommensurate transition and the value of the incommensurate wave vector at the transition point.Comment: 4 pages, 2 figure

    RKKY interaction and intervalley processes in p-doped transition metal dichalcogenides

    Get PDF
    We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in p-doped transition metal dichalcogenides such as MoS2_2 and WS2_2. We consider magnetic impurities hybridized to the Mo d-orbitals characteristic of the valence bands. Using the Matsubara Green's function formalism, we obtain the two-impurity interaction vs their separation and chemical potential of the system, accounting for the important angular dependence which reflects the underlying triangular lattice symmetry. The inclusion of the valence band valley at the Γ\Gamma point results in a strong enhancement of the interaction. Electron scattering processes transferring momentum between valleys at different symmetry points give rise to complex spatial oscillation patterns. Variable doping would allow the exploration of rather interesting behavior in the interaction of magnetic impurities on the surfaces of these materials, including the control of the interaction symmetry, which can be directly probed in STM experiments.Comment: Includes supplemental materia

    Radar sounding using the Cassini altimeter waveform modeling and Monte Carlo approach for data inversion observations of Titan's seas

    Get PDF
    Recently, the Cassini RADAR has been used as a sounder to probe the depth and constrain the composition of hydrocarbon seas on Saturn's largest moon, Titan. Altimetry waveforms from observations over the seas are generally composed of two main reflections: the first from the surface of the liquid and the second from the seafloor. The time interval between these two peaks is a measure of sea depth, and the attenuation from the propagation through the liquid is a measure of the dielectric properties, which is a sensitive property of liquid composition. Radar measurements are affected by uncertainties that can include saturation effects, possible receiver distortion, and processing artifacts, in addition to thermal noise and speckle. To rigorously treat these problems, we simulate the Ku-band altimetry echo received from Titan's seas using a two-layer model, where the surface is represented by a specular reflection and the seafloor is modeled using a facet-based synthetic surface. The simulation accounts for the thermal noise, speckle, analog-to-digital conversion, and block adaptive quantization and allows for possible receiver saturation. We use a Monte Carlo method to compare simulated and observed waveforms and retrieve the probability distributions of depth, surface/subsurface intensity ratio, and subsurface roughness for the individual double-peaked waveform of Ligeia Mare acquired by the Cassini spacecraft in May 2013. This new analysis provides an update to the Ku-band attenuation and results in a new estimate for its loss tangent and composition. We also demonstrate the ability to retrieve bathymetric information from saturated altimetry echoes acquired over Ontario Lacus in December 2008

    Liquid filled canyons on Titan

    Get PDF
    In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system

    Quantum phase transitions into Kondo states in bilayer graphene

    Get PDF
    We study a magnetic impurity intercalated in bilayer graphene. A representative configuration generates a hybridization function with strong dependence on the conduction-electron energy, including a full gap with one hard and one soft edge. Shifts of the chemical potential via gating or doping drive the system between non-Kondo (free-moment) and Kondo-screened phases, with strong variation of the Kondo scale. Quantum phase transitions near the soft edge are of Kosterlitz-Thouless type, while others are first order. Near the hard edge, a bound-state singlet appears inside the gap; although of single-particle character, its signatures in scanning tunneling spectroscopy are very similar to those arising from a many-body Kondo resonance

    Microscopic theory for the incommensurate transition in TiOCl

    Full text link
    We propose a microscopic mechanism for the incommensurate phase in TiOX compounds. The model includes the antiferromagnetic chains of Ti ions immersed in the phonon bath of the bilayer structure. Making use of the Cross-Fisher theory, we show that the geometrically frustrated character of the lattice is responsible for the structural instability which leads the chains to an incommensurate phase without an applied magnetic field. In the case of TiOCl, we show that our model is consistent with the measured phonon frequencies at T=300KT=300K and the value of the incommensuration vector at the transition temperature. Moreover, we find that the dynamical structure factor shows a progressive softening of an incommensurate phonon near the zone boundary as the temperature decreases. This softening is accompanied by a broadening of the peak which gets asymmetrical as well when going towards the transition temperature. These features are in agreement with the experimental inelastic X-ray measurements.Comment: 6 pages, 5 figures. Published versio

    Geologically recent areas as one key target for identifying active volcanism on Venus

    Get PDF
    The recently selected NASA VERITAS and DAVINCI missions, the ESA EnVision, the Roscosmos Venera-D will open a new era in the exploration of Venus. One of the key targets of the future orbiting and in situ investigations of Venus is the identification of volcanically active areas on the planet. The study of the areas characterized by recent or ongoing volcano-tectonic activity can inform us on how volcanism and tectonism are currently evolving on Venus. Following this key target, Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) extend the successful approach and methodology used by previous works to Ganis Chasma in Atla Regio. Here we comment on the main results published in Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) and discuss the important implications of their work for the future orbiting and in situ investigation of Venus. Their results add further lines of evidence indicating possibly recent volcanism on Venus

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim
    • …
    corecore