134 research outputs found

    Cu_{2}O as nonmagnetic semiconductor for spin transport in crystalline oxide electronics

    Full text link
    We probe spin transport in Cu_{2}O by measuring spin valve effect in La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co and La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/La_{0.7}Sr_{0.3}MnO_{3} epitaxial heterostructures. In La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co systems we find that a fraction of out-of-equilibrium spin polarized carrier actually travel across the Cu_{2}O layer up to distances of almost 100 nm at low temperature. The corresponding spin diffusion length dspin is estimated around 40 nm. Furthermore, we find that the insertion of a SrTiO_{3} tunneling barrier does not improve spin injection, likely due to the matching of resistances at the interfaces. Our result on dspin may be likely improved, both in terms of Cu_{2}O crystalline quality and sub-micrometric morphology and in terms of device geometry, indicating that Cu_{2}O is a potential material for efficient spin transport in devices based on crystalline oxides.Comment: 15 pages, 10 figure

    Giant Oscillating Thermopower at Oxide Interfaces

    Get PDF
    Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.Comment: Main text: 28 pages and 3 figures; Supplementary information: 29 pages, 5 figures and 1 tabl

    Seebeck effect in the conducting LaAlO_{3}/SrTiO_{3} interface

    Full text link
    The observation of metallic behavior at the interface between insulating oxides has triggered worldwide efforts to shed light on the physics of these systems and clarify some still open issues, among which the dimensional character of the conducting system. In order to address this issue, we measure electrical transport (Seebeck effect, Hall effect and conductivity) in LaAlO_{3}/SrTiO_{3} interfaces and, for comparison, in a doped SrTiO_{3} bulk single crystal. In these experiments, the carrier concentration is tuned, using the field effect in a back gate geometry. The combined analysis of all experimental data at 77 K indicates that the thickness of the conducting layer is ~7 nm and that the Seebeck effect data are well described by a two-dimensional (2D) density of states. We find that the back gate voltage is effective in varying not only the charge density, but also the thickness of the conducting layer, which is found to change by a factor of ~2, using an electric field between -4 and +4MV/m at 77K. No enhancement of the Seebeck effect due to the electronic confinement and no evidence for two-dimensional quantization steps are observed at the interfaces.Comment: 15 pages, 5 figure

    The Crossover beteween Aslamazov-Larkin and Short Wavelength Fluctuations Regimes in HTS Conductivity Experiments

    Full text link
    We present paraconductivity (AL) measurements in three different high temperature superconductors: a melt textured YBa2Cu3O7YBa_2Cu_3O_7 sample, a Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 epitaxial thin film and a highly textured Bi2Sr2Ca2Cu3O10Bi_2Sr_2Ca_2Cu_3O_{10} tape. The crossovers between different temperature regimes in excess conductivity have been analysed. The Lawrence-Doniach (LD) crossover, which separates the 2D and 3D regimes, shifts from lower to higher temperatures as the compound anisotropy decreases. Once the LD crossover is overcome, the fluctuation conductivity of the three compounds shows the same universal behaviour: for ϵ=lnT/Tc>0.23\epsilon =\ln T/T_c > 0.23 all the curves bend down according to the 1/ϵ31/\epsilon^3 law. This asymptotic behaviour was theoretically predicted previously for the high temperature region where the short wavelength fluctuations (SWF) become important.Comment: 4 pages, Revtex, 1 PostScript figure available upon request ([email protected]); submitted to Physical Review B rapid communication

    Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

    Get PDF
    Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.Comment: 5 pages, 4 figure

    Strength of Tubular Joints Made by Electromagnetic Compression at Quasistatic and Cyclic Loading

    Get PDF
    Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for lightweight structures. The components are joined using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular workpieces, causing a symmetric reduction of the diameter with typical strain rates of up to 10^4 sec^(-1). This process avoids any surface damage of the workpiece because there is no contact between component and forming tool. The strength of electromagnetically formed joints made of aluminum tubes under cyclic loads is essential to establish electromagnetic forming in automotive structures. In the present paper, the quasi-static performance of tubular joints made by electromagnetic compression produced of different mandrel materials will be analyzed as to the influence of process parameters. Therefore, experimental investigations on aluminum tubes (AA6060) joined on mandrels made of different aluminum, copper, and steel alloys were carried out. Furthermore, the behavior of joints with both mandrel and tube made of AA6060 at swelling cyclic loads (R = δ_ min / δ_ max =0) has been evaluated

    Anomalous Nernst effect in the topological and magnetic material MnBi<sub>4</sub>Te<sub>7</sub>

    Get PDF
    The recently discovered magnetic topological insulators (MnBi2Te4)(Bi2Te3)n, n = 0–4, are an ideal playground to study the influence of magnetic properties on band topology, giving access to diverse quantum states in a single compound. In the low temperature-antiferromagnetic state and vanishing magnetic field, the n = 1 system is a topological insulator protected by a combination of time reversal and a translation symmetries. It has been argued that, when the antiferromagnetic phase is forced to a the fully spin polarized state by the application of an external magnetic field, this system develops Weyl cones in the conduction band, which become accessible in presence of an intrinsic electronic doping. In this work, we experimentally prove the raising of field-induced Weyl state through the detection of an intrinsic anomalous Nernst effect in a bulk single crystal of MnBi4Te7.</p

    Influence of Mandrel s Surface on the Mechanical Properties of Joints Produced by Electromagnetic Compression

    Get PDF
    Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for the manufacturing of lightweight structures. Taking conventional interference fits into account, the contact area s influence on the joint s quality seems to be of significance, as e.g. the contact area and the friction coefficient between the joining partners determine an allowed axial load or torsional momentum proportionally. Therefore, different contact area surfaces were prepared by shot peening and different machining operations and strategies. The mandrel s surfaces were prepared by shot peening with glass beads and Al2O3 particles. Alternatively, preparation was done using simultaneous five axis milling, because potential joining partners in lightweight frame structures within the Transregional Collaborative Research Centre SFB/TR10 would be manufactured similarly. After that, the manufactured surfaces were characterized by measuring the surface roughness and using confocal whitelight microscopy. After joining by electromagnetic compression, the influence of different mandrel s surface conditions on the joint s mechanical properties were analyzed by tensile tests. Finally, conclusions and design rules for the manufacturing of joints by electromagnetic compression are given

    In-situ Magnesium Diboride Superconducting Thin Films grown by Pulsed Laser Deposition

    Full text link
    Superconducting thin films of MgB2 were deposited by Pulsed Laser Deposition on magnesium oxide and sapphire substrates. Samples grown at 450C in an argon buffer pressure of about 10-2 mbar by using a magnesium enriched target resulted to be superconducting with a transition temperature of about 25 K. Film deposited from a MgB2 sintered pellet target in ultra high vacuum conditions showed poor metallic or weak semiconducting behavior and they became superconducting only after an ex-situ annealing in Mg vapor atmosphere. Up to now, no difference in the superconducting properties of the films obtained by these two procedures has been evidenced.Comment: 10 pages, 4 figure

    Upper critical fields of MgB2 thin films

    Full text link
    Critical fields of four MgB2 thin films with a normal state resistivity ranging from 5 to 50 mWcm and Tc from 29.5 to 38.8 K were measured up to 28 T. Hc2(T) curves present a linear behavior towards low temperatures. Very high critical field values have been found, up to 24 T along the c-axis and 57 T in the basal plane not depending on the normal state resistivity values. In this paper, critical fields will be analyzed taking into account the multiband nature of MgB2; we will show that resistivity and upper critical fields can be ascribed to different scattering mechanisms.Comment: 8 pages, 2 figures, submitted to Physica C (M2S-Rio proceedings
    corecore