1,484 research outputs found
Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques
We apply a number of statistical and machine learning techniques to classify
and rank gamma-ray sources from the Third Fermi Large Area Telescope (LAT)
Source Catalog (3FGL), according to their likelihood of falling into the two
major classes of gamma-ray emitters: pulsars (PSR) or Active Galactic Nuclei
(AGN). Using 1904 3FGL sources that have been identified/associated with AGN
(1738) and PSR (166), we train (using 70% of our sample) and test (using 30%)
our algorithms and find that the best overall accuracy (>96%) is obtained with
the Random Forest (RF) technique, while using a logistic regression (LR)
algorithm results in only marginally lower accuracy. We apply the same
techniques on a sub-sample of 142 known gamma-ray pulsars to classify them into
two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more,
the RF algorithm has the best overall accuracy (~90%), while a boosted LR
analysis comes a close second. We apply our two best models (RF and LR) to the
entire 3FGL catalog, providing predictions on the likely nature of {\it
unassociated} sources, including the likely type of pulsar (YNG or MSP). We
also use our predictions to shed light on the possible nature of some gamma-ray
sources with known associations (e.g. binaries, SNR/PWN). Finally, we provide a
list of plausible X-ray counterparts for some pulsar candidates, obtained using
Swift, Chandra, and XMM. The results of our study will be of interest for both
in-depth follow-up searches (e.g. pulsar) at various wavelengths, as well as
for broader population studies.Comment: Accepted by Ap
Observations of one young and three middle-aged -ray pulsars with the Gran Telescopio Canarias
We used the 10.4m Gran Telescopio Canarias to search for the optical
counterparts to four isolated -ray pulsars, all detected in the X-rays
by either \xmm\ or \chan\ but not yet in the optical. Three of them are
middle-aged pulsars -- PSR\, J1846+0919 (0.36 Myr), PSR\, J2055+2539 (1.2 Myr),
PSR\, J2043+2740 (1.2 Myr) -- and one, PSR\, J1907+0602, is a young pulsar
(19.5 kyr). For both PSR\, J1907+0602 and PSR\, J2055+2539 we found one object
close to the pulsar position. However, in both cases such an object cannot be a
viable candidate counterpart to the pulsar. For PSR\, J1907+0602, because it
would imply an anomalously red spectrum for the pulsar and for PSR\, J2055+2539
because the pulsar would be unrealistically bright () for the
assumed distance and interstellar extinction. For PSR\, J1846+0919, we found no
object sufficiently close to the expected position to claim a possible
association, whereas for PSR\, J2043+2740 we confirm our previous findings that
the object nearest to the pulsar position is an unrelated field star. We used
our brightness limits (), the first obtained with a
large-aperture telescope for both PSR\, J1846+0919 and PSR\, J2055+2539, to
constrain the optical emission properties of these pulsars and investigate the
presence of spectral turnovers at low energies in their multi-wavelength
spectra.Comment: 10 pages, 11 figures, accpted for publication in MNRA
Analysis of airplane boarding via space-time geometry and random matrix theory
We show that airplane boarding can be asymptotically modeled by 2-dimensional
Lorentzian geometry. Boarding time is given by the maximal proper time among
curves in the model. Discrepancies between the model and simulation results are
closely related to random matrix theory. We then show how such models can be
used to explain why some commonly practiced airline boarding policies are
ineffective and even detrimental.Comment: 4 page
Large Binocular Telescope observations of PSR J2043+2740
We present the results of deep optical imaging of the radio/-ray
pulsar PSR J2043+2740, obtained with the Large Binocular Telescope (LBT). With
a characteristic age of 1.2 Myr, PSR J2043+2740 is one of the oldest (non
recycled) pulsars detected in -rays, although with still a quite high
rotational energy reservoir ( erg
s). The presumably close distance (a few hundred pc), suggested by the
hydrogen column density ( cm),
would make it a viable target for deep optical observations, never attempted
until now. We observed the pulsar with the Large Binocular Camera of the LBT.
The only object (V=25.440.05) detected within ~3" from the pulsar radio
coordinates is unrelated to it. PSR J2043+2740 is, thus, undetected down to
V~26.6 (3-), the deepest limit on its optical emission. We discuss the
implications of this result on the pulsar emission properties.Comment: 4 pages, 3 figures, accepted for publication on MNRA
Multi-wavelength observations of 3FGL J2039.6-5618: a candidate redback millisecond pulsar
We present multi-wavelength observations of the unassociated gamma-ray source
3FGL J2039.6-5618 detected by the Fermi Large Area Telescope. The source
gamma-ray properties suggest that it is a pulsar, most likely a millisecond
pulsar, for which neither radio nor -ray pulsations have been detected
yet. We observed 3FGL J2039.6-5618 with XMM-Newton and discovered several
candidate X-ray counterparts within/close to the gamma-ray error box. The
brightest of these X-ray sources is variable with a period of 0.22450.0081
d. Its X-ray spectrum can be described by a power law with photon index
, and hydrogen column density cm, which gives an unabsorbed 0.3--10 keV X-ray flux of erg cm s. Observations with the Gamma-Ray Burst
Optical/Near-Infrared Detector (GROND) discovered an optical counterpart to
this X-ray source, with a time-average magnitude . The counterpart
features a flux modulation with a period of 0.227480.00043 d that
coincides, within the errors, with that of the X-ray source, confirming the
association based on the positional coincidence. We interpret the observed
X-ray/optical periodicity as the orbital period of a close binary system where
one of the two members is a neutron star. The light curve profile of the
companion star, with two asymmetric peaks, suggests that the optical emission
comes from two regions at different temperatures on its tidally-distorted
surface. Based upon its X-ray and optical properties, we consider this source
as the most likely X-ray counterpart to 3FGL J2039.6-5618, which we propose to
be a new redback system.Comment: 35 pages, 8 figures, accepted for publication on Astrophysical
Journa
Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays
We present new Chandra and XMM-Newton observations of a sample of eight
radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For
all eight pulsars we identify the X-ray counterpart, based on the X-ray source
localization and the best position obtained from Gamma-ray pulsar timing. For
PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind
nebula. Our new results consolidate the work from Marelli et al. 2011 and
confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of
radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while
the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars,
the distribution is more dispersed for the radio-loud ones, possibly showing
two peaks. We discuss possible implications of these different distributions
based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3
figures, 2 table
Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars
The low luminosity, X-ray flaring activity, of the sub-class of high mass
X-ray binaries called Supergiant Fast X-ray Transients, has been investigated
using XMM-Newton public observations, taking advantage of the products made
publicly available by the EXTraS project. One of the goals of EXTraS was to
extract from the XMM-Newton public archive information on the aperiodic
variability of all sources observed in the soft X-ray range with EPIC (0.2-12
keV). Adopting a Bayesian block decomposition of the X-ray light curves of a
sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft
X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the
rise time to and the decay time from the peak of the flares, their duration and
the time interval between adjacent flares. We also estimated the peak
luminosity, average accretion rate and energy release in the flares. The
observed soft X-ray properties of low-luminosity flaring activity from SFXTs is
in qualitative agreement with what is expected by the application of the
Rayleigh-Taylor instability model in accreting plasma near the neutron star
magnetosphere. In the case of rapidly rotating neutron stars, sporadic
accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019
April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables
- …
