213 research outputs found
Drived diffusion of vector fields
A model for the diffusion of vector fields driven by external forces is
proposed. Using the renormalization group and the -expansion, the
dynamical critical properties of the model with gaussian noise for dimensions
below the critical dimension are investigated and new transport universality
classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and
emphasize
Chemical structure of methylmethacrylate-2-[2′,3′,5′-triiodobenzoyl]oxoethyl methacrylate copolymer, radio-opacity, in vitro and in vivo biocompatibility
The properties of copolymers (physical, chemical, biocompatibility, etc.) depend on their chemical structure and microstructural characteristics. We have prepared radio-opaque polymers based on the copolymers of methyl methacrylate (MMA) and 2-[2′,3′,5′-triiodobenzoyl]oxoethyl methacrylate (TIBOM). The copolymerization reaction between TIBOM and MMA showed that the reactivity ratios were r1 = 0.00029 and r2 = 1.2146. The composition diagram is typical for a practically non-homopolymerizable monomer (TIBOM) and a very reactive monomer (MMA). The copolymers were analyzed on an X-ray microcomputed tomograph and they proved to be radio-opaque even at low concentrations of TIBOM. The biocompatibility was tested both in vitro (with J774.2 macrophage and SaOS-2 osteoblast like cells) and in vivo in the rat. These materials were found to be non-toxic and were well tolerated by the organism. These combined results led to the suggestion that this type of polymer could be used as dental or bone cements in place of barium or zirconium particles, which are usually added to provide X-ray opacity
Diagnostic performance and reference values of novel biomarkers of paediatric heart failure
Objective: Biomarkers play a pivotal role in heart failure (HF) management. Reference values and insights from studies in adults cannot be extrapolated to the paediatric population due to important differences in pathophysiology and compensatory reserve. We assessed the diagnostic utility of four novel biomarkers in paediatric HF.
Methods: Midregional (MR) pro-atrial natriuretic peptide (proANP), soluble ST2 (sST2), growth differentiation factor-15 (GDF-15), MR-pro-adrenomedullin (proADM) and N-terminal pro-B natriuretic peptide (NT-proBNP) were measured in 114 patients and 89 controls. HF was defined as the presence of HF symptoms and/or abnormal systolic ventricular function. Receiver-operating characteristics were plotted, and the area under the curve (AUC) was measured. This was repeated for subgroups with cardiomyopathy and congenital heart disease (CHD). Ventricular systolic function was measured by magnetic resonance or echocardiography. Reference values were calculated according to the current guidelines.
Results: The AUC for diagnosing HF was 0.76 for MR-proANP (CI 0.70 to 0.84) and 0.82 for NT-proBNP (CI 0.75 to 0.88). These parameters performed similarly in the subgroups with CHD and cardiomyopathy. By contrast, MR-proADM, GDF-15 and sST2 performed poorly. When used in conjunction with NT-proBNP, no parameter added significantly to its diagnostic accuracy. NT-proBNP, MR-proANP, GDF-15 and sST2 could accurately discriminate between patients with preserved and patients with poor functional status. In a subset of patients with dilated cardiomyopathy, NT-proBNP, MR-proANP, MR-proADM and GDF-15 were associated with poor LV function.
Conclusions: MR-proANP could accurately detect HF in children and adolescents. Its diagnostic performance was comparable with that of NT-proBNP, regardless of the underlying condition. Reference values are presented
Soft capacitor fibers using conductive polymers for electronic textiles
A novel, highly flexible, conductive polymer-based fiber with high electric
capacitance is reported. In its crossection the fiber features a periodic
sequence of hundreds of conductive and isolating plastic layers positioned
around metallic electrodes. The fiber is fabricated using fiber drawing method,
where a multi-material macroscopic preform is drawn into a sub-millimeter
capacitor fiber in a single fabrication step. Several kilometres of fibers can
be obtained from a single preform with fiber diameters ranging between 500um
-1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is
independent of the fiber diameter. For comparison, a coaxial cable of the
comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the
fiber frequency response shows that in its simplest interrogation mode the
capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely
proportional to the fiber length L and is independent of the fiber diameter.
Softness of the fiber materials, absence of liquid electrolyte in the fiber
structure, ease of scalability to large production volumes, and high
capacitance of our fibers make them interesting for various smart textile
applications ranging from distributed sensing to energy storage
Statistical Learning in Chip (SLIC) (Invited Paper)
Abstract-Despite best efforts, integrated systems are "born" (manufactured) with a unique 'personality' that stems from our inability to precisely fabricate their underlying circuits, and create software a priori for controlling the resulting uncertainty. It is possible to use sophisticated test methods to identify the bestperforming systems but this would result in unacceptable yields and correspondingly high costs. The system personality is further shaped by its environment (e.g., temperature, noise and supply voltage) and usage (i.e., the frequency and type of applications executed), and since both can fluctuate over time, so can the system's personality. Systems also "grow old" and degrade due to various wear-out mechanisms (e.g., negative-bias temperature instability), and unexpectedly due to various early-life failure sources. These "nature and nurture" influences make it extremely difficult to design a system that will operate optimally for all possible personalities. To address this challenge, we propose to develop statistical learning in-chip (SLIC). SLIC is a holistic approach to integrated system design based on continuously learning key personality traits on-line, for selfevolving a system to a state that optimizes performance hierarchically across the circuit, platform, and application levels. SLIC will not only optimize integrated-system performance but also reduce costs through yield enhancement since systems that would have before been deemed to have weak personalities (unreliable, faulty, etc.) can now be recovered through the use of SLIC
Culture-Negative Prosthetic Joint Infection
Background. Culture-negative (CN) prosthetic joint infection (PJI) has not been well studied. We performed a retrospective cohort study to define the demographic characteristics and determine the outcome of patients with CN PJI. Methods. All cases of CN total hip arthroplasty and total knee arthroplasty infections (using a strict case definition) treated at our institution from January 1990 through December 1999 were analyzed. Kaplan-Meier survival methods were used to determine the cumulative probability of success. Results. Of 897 episodes of PJI during the study period, 60 (7%) occurred in patients for whom this was the initial episode of CN PJI. The median age of the cohort was 69 years (range, 36–87 years). Patients had received a prior course of antimicrobial therapy in 32 (53%) of 60 episodes. Of the 60 episodes, 34 (57%), 12 (20%), and 8 (13%) were treated with 2-stage exchange, debridement and retention, and permanent resection arthroplasty, respectively. The median duration of parenteral antimicrobial therapy was 28 days (range, 0–88 days). Forty-nine (82%) of 60 episodes were treated with a cephalosporin. The 5-year estimate of survival free of treatment failure was 94% (95% confidence interval, 85%–100%) for patients treated with 2-stage exchange and 71% (95% confidence interval, 44%–100%) for patients treated with debridement and retention. Conclusions. CN PJI occurs infrequently at our institution. Prior use of antimicrobial therapy is common among patients with CN PJI. CN PJI treated at our institution is associated with a rate of favorable outcome that is comparable to that associated with PJI due to known bacterial pathogens
RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination
Variable (diversity) joining [V(D)J] recombination of immune gene loci proceeds in an ordered manner with D to J portions recombining first and then an upstream V joins that recombinant. We present evidence that the non-core domain of recombination activating gene (RAG) protein 2 is involved in the regulation of recombinatorial order. In mice lacking the non-core domain of RAG2 the ordered rearrangement is disturbed and direct V to D rearrangements are 10- to 1000-times increased in tri-partite immune gene loci. Some forms of inter-chromosomal translocations between TCRβ and TCRδ D gene segments are also increased in the core RAG2 animals as compared with their wild-type (WT) counterparts. In addition, the concise use of proper recombination signal sequences (RSSs) appears to be disturbed in the core RAG2 mice as compared with WT RAG2 animals
Gravitational collapse of spherically symmetric stars in noncommutative general relativity
Gravitational collapse of a class of spherically symmetric stars is investigated. We quantise the geometries describing the gravitational collapse by a deformation quantisation procedure. This gives rise to oncommutative spacetimes with gravitational collapse
- …
