

Deviation-tolerant computation in concurrent failure-prone
hardware
Citation for published version (APA):
Stanley-Marbell, P., & Marculescu, D. (2008). Deviation-tolerant computation in concurrent failure-prone
hardware. (ES reports; Vol. 2008-01). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/62bfd54a-e453-43b6-a19c-de77ec546427

Deviation-Tolerant Computation in

Concurrent Failure-Prone Hardware

Phillip Stanley-Marbell
Diana Marculescu

ES Reports
ISSN 1574-9517

ESR-2008-01
24 January 2008

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

People who are really serious about software
should make their own hardware. — Alan Kay

© 2008 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Deviation-Tolerant Computation in Concurrent Failure-Prone

Hardware

PHILLIP STANLEY-MARBELL

Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, NL.

DIANA MARCULESCU

Department of ECE, Carnegie Mellon, 5000 Forbes Ave, Pittsburgh PA 15213-3890, US.

In many applications of computing systems, particularly those which process data samples from real-world signals, it is possible to trade

off accuracy of computation in the presence of hardware faults, for performance or energy efficiency. Such trade-offs may be even more

pronounced in platforms which employ multiple processing elements, as one may then also consider trade-offs between the speeds of

communication between processing elements (and hence the computation throughput), and the possibility of faults in such communi-

cations (and hence possible errors in a computation’s result).

Presented are analysis on the relation between faults occurring in compute hardware or communicated program state (in a multi-

processor system) and the resulting deviations in values manifested in source-level program variables. These relations are dependent

on the distributions of values taken on by program variables of different data types in the absence of faults, and we present detailed

characterizations of these distributions for a large collection of programs. We show how the analytic derivations, in conjunction with the

empirical characterizations, can enable the implementation of deviation-tolerant transformations in programs. The work is presented

in the context of a hardware platform we have designed and implemented, containing 24 processing elements, that manifests tradeoffs

between occurrences of faults in hardware, performance, and energy efficiency.

1. INTRODUCTION

Failures in hardware may be the result of a variety of phenomena, but are usually eventually manifested as

undesirable program behaviors. These undesirable behaviors may take many forms, including deviation from

correct flow control and deviations of values taken on by program variables. In some classes of applications,

small magnitudes of such deviations of values may be acceptable. For example, small magnitudes of devia-

tions in the variables representing pixel values in an image processing application may be tolerable. When

such tolerance to deviations exists, it is desirable to quantify the relation between the occurrence of faults in

hardware and the incurred deviations of variable values, in order to enable trade-offs between performance or

energy efficiency, and such value deviations. Analyses capturing these relations, as well as the empirical pro-

gram properties on which they depend, are the subject of this paper. These analyses enable a variety of new

program-level transformations, such as compile-time transformations to trade off the distribution of deviation

magnitudes, for computation and memory overheads, or for energy efficiency.

1.1 A motivating hardware platform

A concrete example of a hardware platform with such performance versus value deviation trade-offs is shown

in Figure 1(a). The platform shown in the figure is employed as a computation resource for a low-power em-

2 ·
Processing element

Interconnect; majority of interconnect

routed on bottom layer of PCB

(a) 24-processor system.

Jitter

Noise

Superposed bit streams

yield "eye-diagram"

"1's"

"0's"

(b) Eye diagram at 1.0 Mb/s

Jitter

Noise

Superposed bit streams yield "eye-diagram"

"1's"

"0's"

(c) Eye diagram at 16.0 Mb/s

Fig. 1. A hardware platform containing 24 processing elements, used as a scalable embedded multicomputer system ((a), left). The

oscilloscope-captured eye diagrams from hardware measurements performed on this platform, shown in (b) and (c), illustrate tradeoffs

between speed and error probability (a function of noise) on the interconnect between processing elements.

bedded system. It contains 24 ultra-low-power microcontrollers, each running at 16 MHz, with 32 kB of inter-

nal flash memory and 1 kB of on-chip SRAM [Texas Instruments, Inc., 2006] interconnected in a low-diameter

interconnect network, and provides both low idle power dissipation (less than 30 µW) and high peak compu-

tation throughput (scalable up to 384 MIPS at approximately 1 mW per MIPS).

Both the interconnect and processing elements exhibit performance/power versus reliability trade-offs. At

high interconnect speeds (which can be configured by software), the likelihood of bit-errors in communicated

data is increased, as the signal-to-noise ratio is decreased, and relative jitter increases (Figure 1(b) and (c)).

High interconnect speeds however provide increased performance and reduce the energy per communicated

bit. The system operates in a voltage range of 1.8 V to 3.6 V, and at a given voltage, the maximum frequency at

which each of its constituent processing elements can be safely run is bounded within a window specified by

the manufacturer of the component processors; operating at voltages that are close to the lower threshold of

permissible voltage for a given frequency reduces dynamic power dissipation, but increases the likelihood of

faults in computation and communication.

The hardware platform shown in Figure 1(a) is programmed using a programming model in which applica-

tions to be executed are partitioned over the collection of processors, with these individual partitions commu-

nicating over the interconnect to achieve the execution of a single application. Faults in the communication

interconnect, due to either the chosen communication speed or operating voltage, manifest as bit errors in

communicated data, and eventually as errors in the executing application. The communicated data corre-

sponds to values of program variables and data structures, and when these variables or data structure ele-

ments are of arithmetic types (e.g., types int and float in the C programming language), we may consider

the effects of communication faults as inducing value deviations. The precise nature of these value deviations

are dependent on the distribution of bit-level faults incurred in the communication medium, on the types of

the variables or data structures (e.g., unsigned int versus signed int), and on the values being commu-

nicated. Some variables, due to the nature of data they represent, may be tolerant of larger value deviations

than others (e.g., variables representing color pixel values, versus pointers). It is thus possible, in combination

with forward error correction for a restricted set of the data traversing the interconnect, to operate the system

at a configuration that provides a desired trade-off between performance, energy dissipation, and correctness.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 3

In this paper, we present the analytic relations for determining the distributions of value deviations, and em-

pirical studies of the distributions of error-free values taken on by variables of different data types on which

the value deviation relations depend, for a large collection of embedded and general purpose applications.

1.2 Other sources of temporary logic upsets in hardware and software

There are a variety of other physical processes leading to faults in semiconductor devices. For the purposes

of this work, those of interest are temporary or intermittent failures, which cause temporary disturbances of

circuit state; in digital systems, these disturbances of circuit state are manifested as disturbances of digital

logic values, or logic upsets.

Temporary logic upsets have long been of concern in high availability systems such as servers [Horst et al.,

1990; Slegel et al., 1999]. In PCs, workstations and server-class systems, the predominant causes of logic up-

sets are high energy particles such as α-particles [Baumann, 2005]. The α-particle flux, the number of particle

strikes per m2/s per second, varies with altitude (with a peak at approximately 60,000 feet), with time (varies

with the 11 year solar cycle), with application domain (e.g., terrestrial versus space applications), and also

varies with latitude [Heidergott, 2005]. Some of the natural sources of α-particles are illustrated in Figure 2. In

embedded systems, which are often deployed in environments that differ drastically from climate-controlled

office and server rooms which are often thought of as typical computing system deployments, additional

sources of logic upsets include electrical noise and various sources of electromagnetic radiation.

The scaling of semiconductor process technologies requires the use of ever lower operating voltages (e.g., to

maintain a constant electric field across generations in constant field scaling); these lower operating voltages

reduce the noise margins of circuits, making logic upsets even more likely. Device scaling also reduces the

minimum charge necessary to disturb circuit state, and as a result, it is easier for lower-energy disturbances

to cause upsets. Even though shrinking device sizes reduces the probability of a given hardware structure

incurring a high-energy particle hit (there is a smaller area to target), the increasing number of transistors

being integrated into contemporary designs results in little decrease of the probability of logic upsets for the

whole integrated circuit across technology generations [Cannon et al., 2004].

The effect of the aforementioned physical phenomena is often complex; for digital systems however, fluctua-

tions in circuit state eventually manifest as changes in logic values — i.e., a binary digit in a hardware structure

is forced to a logic 0 or a logic 1. If the value forced at a bit is the same as the value already there, the logic

upset is said to be masked. We will refer to bit upsets, if not masked by the underlying bit values, as errors. To

contrast them from irreversible failures, temporary / intermittent failures are usually referred to as soft errors.

One measure of the rate of occurrence of logic upsets is the metric of failures in time (FIT), with 1 FIT corre-

sponding to one failure every 109 device operation hours. A current-generation 8 MB (64 Mb) static random-

access memory (SRAM), has a FIT rate of approximately 100,000 at sea level, and may thus witness approxi-

mately one such upset a year.

4 ·

Radioactive Decay of
238

U and
232

Th
from device packaging mold resin,

210
Po from PbSn solder (and Al wire)

12C

α-particlesγ- raysLithium

Cosmic rays Thermal neutrons

High energy neutron
(can penetrate up to
5 ft of concrete)

Neutron capture within Si

and B in integrated circuits

Unstable isotope

Magnesium

or

Possible interaction paths

Circuit state disturbance inducement

Microprocessor

electrical noise

Secondary ions and energetic particles may generate
electron-hole pairs in silicon; these may migrate
through device and aggregate, creating current
pulses that lead to changes of logic state.

–

+
–

+

temperature

fluctuations

}
LD @

(R4)
, R2

Program:

λx.+2x ?

Fig. 2. Some sources of temporary logic upsets in hardware.

1.3 Contributions and paper outline

This paper presents the mathematical underpinnings and quantitative evaluations necessary to enable

deviation-tolerant computation and program-level transformations. The work is presented in the context of

a concrete hardware platform in which such transformations are of interest. Following an overview of rel-

evant related research in Section 2, Section 3 introduces the terminology employed in the remainder of the

paper. The derivation of the analytic expressions relating empirical program properties and hardware fault

properties, to the resulting program-level value deviations are presented in Section 4. The empirical program

properties on which these derived relations depend are presented in Section 5, followed by an example appli-

cation of the ideas presented in the paper in Section 6. Section 7 concludes the paper with a summary and

directions for future research.

2. RELATED RESEARCH

A recent attempt to formalize the effects of soft-errors on the behavior of programs is presented

in [Walker et al., 2006]. The model addressed therein is one in which the goal is to attempt to nullify the effect

of soft errors by redundant computation, as opposed to being tolerant of some distribution of value deviations.

Other techniques have previously been presented in the research literature targeting corruption of code and

control-flow deviations resulting from logic upsets [Saxena and McCluskey, 1990]. The techniques presented

in this paper are complementary, as we do not directly address code corruption or control-flow disruption due

to logic upsets, but rather address the potential for reducing the overhead of required redundancy (in time or

space) when some deviation in values of computations resulting from logic upsets may be tolerable.

The observation that different portions of programs, or of hardware, may require different amounts

of fault-protection, has previously been made for hardware systems [Mukherjee et al., 2003], phases

of programs [Reis et al., 2005], and the computations performed by special classes of applica-

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 5

tions [Wong and Horowitz, 2006]. In contrast, the program-level deviation-tolerance analysis presented

in this paper facilitates the application of varying amounts of fault protection to individual program variables,

and we present concrete compile-time analysis for facilitating such per-variable transformation.

The analyses presented in this paper employ as input the distribution of error-free values taken on by

program variables at runtime. While such distributions have not been studied in detail in the research

literature, they are related to the ideas of spatially-frequent values [Yang and Gupta, 2002], minimum bit-

widths [Brooks and Martonosi, 1999; Budiu et al., 2000; Mahlke et al., 2001; Stephenson et al., 2000], value pro-

filing [Calder et al., 1997], and value locality [Lipasti et al., 1996].

3. TERMINOLOGY, DEFINITIONS, AND ASSUMPTIONS

When the values taken on by a phenomenon are not predictable, they may intuitively be considered in terms

of their individual likelihoods of occurrence. The possible manifestations of such phenomena are referred to

in probability theory as events. In the context of this paper, events will correspond to source-level program

variables of a given type (e.g., int or double) taking on a specific value. Each event can be interpreted as a

value taken on by a random variable. Associated with each event is a probability, a real number between 0 and

1, that indicates the likelihood of the event, with value 0 for the impossible event, and value 1 for the certain

event. In the case of a discrete space of events, the function mapping events to their probabilities is called a

probability mass function (PMF). The PMF for a random variable X defines the probability that the random

variable X (which might represent the values taken on by a program source variable,) takes on the specific

value x, written as Pr{X = x} or fX(x).

Given two random variables A and B, the joint probability mass function (joint PMF), is the probability that

A takes on the value a at the same time as B takes on the value b, written as Pr{A = a, B = b}, or fA,B(a, b). The

distributions fA(a) and fB(b) are referred to as the marginals of the joint PMF fA,B(a, b). If the random variables

A and B are independent, the joint PMF is identically the product of the marginals. The specific notation used

in the remainder of the paper is summarized in Figure 3.

4. PER-TYPE DISTRIBUTIONS OF VALUE DEVIATIONS IN PROGRAMS

Deviations in values of variables due to logic upsets are determined by three factors — (1) the logic upsets

occurring within machine words representing variables of a given type, (2) the nature of the bit-level layout of

different data types, and (3) the values taken on by variables in the absence of errors.

The data type of a variable (e.g., int versus float) determines how individual bits affect the numeric value

the variable holds. For example, in an unsigned 8-bit data type, the most significant bit (bit 7) has a greater

contribution to its value than the least significant bit (bit 0). The values taken on by variables in the absence

of upsets determine the likelihood that a logic upset at a given bit position will be masked. For example,

if a variable always takes on the numeric value zero, and if logic upsets are always such that they force the

affected bit position to a 0, then upsets will always be masked and the value deviation will always be zero. As

a more concrete example, Figure 4 shows the empirical runtime value and bit-state probability distributions

6 ·

Pr{E}
def
= Probability of the event E

fX(x)
def
= Pr{X = x}, FX(x)

def
= Pr{X ≤ x}, FX(x)

def
= Pr{X > x}

Parameters related to physical processes

t
def
= transient logic upset vector

t〈i〉
def
= ith bit of transient logic upset vector

ft〈i〉
(k)

def
= Probability mass function (PMF) for t〈i〉

= probability that position i of bit upset vector, t, takes on value k ∈ {0, 1}

Empirical program properties

V
def
= Random variable, error-free variable value; assumed independent of t

V〈i〉
def
= Random variable, ith bit of variable value

fV (v)
def
= Pr{V = v}, e.g., =

1

2n
for an n-bit V with all values equally likely

fV〈i〉
(k)

def
= Pr{V〈i〉 = k}, k ∈ {0, 1}, e.g., = 0.5 when all values are equally likely

Derived quantities

W
def
= Random variable, error-containing variable value —

a value that is incorrect due to the incidence of logic upsets in hardware

fW (w)
def
= Pr{W = w}

M
def
= Random variable, numeric value deviation

fM (m)
def
= Pr{| W − V | = m}

Fig. 3. Summary of terminology and definitions.

0 1´109 2´109 3´109 4´109

v

0.1

0.2

0.3

0.4

0.5

P
rH

V
=

v
L

PMF; Type: int

(a) Empirical distribution of values.

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: int

(b) Empirical bit-level probabilities.

Fig. 4. Example of empirically measured distributions of variable values and bit-level probabilities, illustrating varying likelihood of logic

upset masking across bits in variables of data type int for the SPEC2000 ammp benchmark.

aggregated across variables of type int in the ammp benchmark from the SPEC CPU 2000 benchmark suite1.

The data in the figure was collected by monitoring the values of variables in the benchmark each time they

1We have observed other applications from different application domains to exhibit similar properties. The presentation of those detailed

empirical characterizations of the value and bit-state distributions for different data types, across multiple applications is presented in

Section 5.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 7

were read or written at runtime, and logging the observed values, over the benchmark’s lifetime. From the

figure, it can be seen that the most significant 17 bits of variables of C language data type int in the ammp

application, take on the value 1 with almost zero probability, and are thus very unlikely to mask logic upsets

which force them to a 1.

In what follows, we present analytic expressions for the relation between value deviation, probability of

logic upsets, and the values taken on by variables, in the absence of faults. We proceed by first deriving ex-

pressions for the distribution of possibly-erroneous values taken on by variables, which we refer to as the

error-containing value, W . This distribution of values for W , fW (w), will then be used in Section 4.4 to obtain

closed-form analytic expressions for the distribution of value deviations M , fM (m).

4.1 Error-containing value PMF, fW (w), unsigned n-bit values, single logic upsets

For upset-free values, fV (v) defines the probability that an n-bit value, V , takes on the specific instance value

of v. Similarly, the error-containing value PMF, fW (w) defines the probability that a value, W , which might

have incurred single or multiple-bit upsets, defined by the upset distribution ft〈i〉
(k), has the specific instance

value w. For the case of a single logic upset in one of the n bit positions,

fW (w) =
n−1∑

i=0

(

Pr
{
t〈i〉 = 0, V = w + 2i

}

︸ ︷︷ ︸

Ê

+ Pr
{
t〈i〉 = 1, V = w − 2i

}

︸ ︷︷ ︸

Ë

)

+ Pr

{
⋃

0<i<n−1

t〈i〉 = V〈i〉, V = w

}

︸ ︷︷ ︸

Ì

=

n−1∑

i=0

fV (w + 2i)ft〈i〉
(0) +

n−1∑

i=0

fV (w − 2i)ft〈i〉
(1) +

n−1∑

i=0

ft〈i〉
(V〈i〉)fV (w), (1)

where, for the term Ê, the error-containing value is smaller than upset-free value, due to bit i forced from a

1 to a 0; for term Ë, the error-containing value is larger than upset-free value, due to bit i forced from a 0 to

a 1; for term Ì, the logic upset at bit i is masked by the pre-existing value in the variable. In the last step

above, the joint PMFs are re-written as the product of the marginal PMFs due to the assumed independence

between upset-free values and the occurrence of logic upsets. The overall structure of Equation 1 is governed

by the digital arithmetic properties of unsigned integer values, wherein bit i of an n-bit word contributes 2i to

its numeric value.

4.2 Error-containing value PMF, fW (w), unsigned n-bit values, multiple independent logic upsets

The analytic expression for the error-containing value in Equation 1 was derived based on the assumption

of the possibility of occurrence of only a single logic upset at a time. In practice however, it is possible that

multiple logic upsets may affect a single machine word representing a program variable, and such multi-bit

upsets may be independent or correlated.

In considering multiple independent upsets, it is easiest to begin by looking at the conditional PMF,

fW (w | V = a), and once that has been determined, un-conditioning by summing over all possible values

for a. For a particular instance V = a of the upset-free value V , the corresponding value deviation (m) and

8 ·

0 0 1 0 1 0 1 0

0 0 1 0 1 0 1 1

error-free value, V = 42

error-containing value, W = 43

Value Deviation, M : 20 = 1

0 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0

error-free value, V = 42

error-containing value, W = 34

Value Deviation, M : 23 = 8

(a)

0 0 1 0 1 0 1 0

0 0 1 0 0 0 0 0

error-free value, V = 42

error-containing value, W = 32

Value Deviation, M = 10

0 0 1 0 1 0 1 0

0 0 1 0 1 0 0 1

error-free value, V = 42

error-containing value, W = 41

Value Deviation, M = 1

(b)

Fig. 5. Example and intuition behind the relation between error-free values, V , the distribution of (a) single and (b) multiple independent

logic upsets, ft〈i〉
(k), the resulting error-containing values, W , and the value deviation M , for unsigned data types.

error-containing values (w) are related by m = | w − a |. Then,

fW (w | V = a) =
Pr{W = w, V = a}

fV (a)

=
Pr
{

V = a,
∑n−1

i=0
Mi =| w − a |

}

fV (a)
,

where Mi =
(
−
(
a〈i〉2

i
)

+
(
t〈i〉2

i
)) (

t〈i〉 ⊕ a〈i〉
)
. (2)

The intuition behind the above expression for Mi, is to obtain an expression for the idea: “If bit i in a is flipped

from 0 to 1, the contributed error is the addition of 2i, and if flipped from 1 to 0, the contributed error is the

subtraction of 2i". When the logic upset leads to a bit value in the upset-vector, t, to be the same as that in the

value, a, then t〈i〉 ⊕ a〈i〉 = 0. Un-conditioning by summing over all possible values of a, we have

fW (w) =

2
n−1∑

a=0

fW (w | V = a)

=

2
n−1∑

a=0

Pr
{

V = a,
∑n−1

i=0
Mi =| w − a |

}

fV (a)
,

where Mi =
(
−
(
a〈i〉2

i
)

+
(
t〈i〉2

i
)) (

t〈i〉 ⊕ a〈i〉
)
. (3)

4.3 Another illustrative example

Figure 5 further illustrates by example, the intuition behind the relation between single and multiple logic up-

sets and the attendant error-containing values and value deviations. In the case of single logic upsets affecting

a variable (Figure 5(a)), the value deviation can only be a power of two, corresponding to one of each of the

bits representing the variable incurring a logic upset that is not masked. This was captured in Equation 1.

When multiple independent logic upsets may occur, all integer deviations in value of a variable are possible

(Figure 5(b)), and this case was captured by Equation 3.

Equations 1 and 3 represent the probability distributions of error-containing values that may be taken on by

unsigned n-bit data types in the presence of logic upsets in the underlying hardware. From these expressions,

and given a known distribution of values taken on in the absence of upsets, such as the example illustrated in

Figure 4 for the SPEC 2000 application ammp, it is possible to obtain expressions for the deviation in value that

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 9

will be incurred by variables in the presence of logic upsets. Such distributions of value deviation, represented

by the value deviation PMF fM (m), can serve as a basis for a variety of program transformations to improve

resilience to soft-errors; an example of one such transformation is presented in Section 6.

4.4 Analytic Expressions for Variable Value Deviation

The error-containing value, W was derived in Sections 4 to enable the generation of a closed-form expression

for fM (m). The PMFs fM (m), fW (w) and fV (v) are related by

fM (m) = Pr{M = m}

= Pr{| W − V |= m}

= Pr{W = V + m} + Pr{W = V − m}

=
∑

a

fW (a)fV (a − m) +
∑

a

fW (a)fV (a + m). (4)

The intuition behind the above is that the value deviation is m whenever the error-free random variable V

differs from the error-containing random variable, W , by m, for all possible cases of V and W .

Based on Equation 4 and on the prior derivation of fW (w) in Equation 1, we can now obtain a closed form

expressions for fM (m). For the case of unsigned n-bit values and singly-occurring logic upsets, substituting

Equation 1 into Equation 4, we obtain

fM (m) =

2
n−1∑

a=0

(
n−1∑

i=0

fV (a + 2i)ft〈i〉(0) +

n−1∑

i=0

fV (a − 2i)ft〈i〉(1)

+

n−1∑

i=0

ft〈i〉(V〈i〉)fV (a)

)

fV (a − m) +

2
n−1∑

a=0

(
n−1∑

i=0

fV (a + 2i)ft〈i〉(0)

+

n−1∑

i=0

fV (a − 2i)ft〈i〉(1) +

n−1∑

i=0

ft〈i〉(V〈i〉)fV (a)

)

fV (a + m). (5)

A similar expression of fM (m) for the case of multiple concurrent upsets can be obtained by substituting Equa-

tion 3 into Equation 4; we omit it here for brevity.

In the derivations thus far, there have been two missing components: the PMF for error-free values, fV (v)

and the logic upset PMF, ft〈i〉(k). The distribution of logic upsets, ft〈i〉(k), is dependent on the hardware and

environment in which applications are deployed. For example, from the eye diagram in Figure 1(c), it can be

observed that the noise in high logic levels is larger in magnitude (up to 2 V below the nominal logic1), than

the noise in low logic levels (which is approximately a maximum of +/- 1 V). It is thus more likely for a 1 to be

misinterpreted as a 0 , than vice versa. In the absence of specific information for a given platform however, a

reasonable approximation would be to assume 0→1 and 1→0 upsets are equally probable, and are uniformly

distributed over the hardware state. The analyses presented in this paper are however not dependent on any

such assumption.

The distribution of values taken on by program variables of different type ascriptions, fV (v), is an empirical

property. Obtaining fV (v) would involve, for example, profiling large suites of applications, while monitoring

the values taken on by all the variables of a given data type, within the individual programs. This empirical

estimate of fV (v) would be meaningful if the collection of programs studied was sufficiently large. The results

10 ·

Instruction set simulator
Debug

ger

+

Simulation

Instructions

Debugging information

Benchmark Binary

Per-variable value traces

Per-type value probability distributions

Analysis

Fig. 6. Infrastructure for performing automated variable-level value tracing to construct per-type PMFs.

of such detailed empirical characterizations are presented in the next section.

5. EMPIRICAL DISTRIBUTIONS

To investigate the per-type statistical value distributions of variables, we extended an instruction-set simu-

lator [Stanley-Marbell and Marculescu, 2007] with many of the capabilities traditionally found in a debugger

such as GDB [Stallman and Pesch, 1993], to process the debugging information embedded in binaries loaded

for execution on the simulator, as illustrated in Figure 6. This enables the instruction-set simulation environ-

ment, given any compiled binary, to automatically determine the list of all source-level program variables and

their associated types, as well as the mapping between these variables and machine registers, static data sec-

tions, heap and stack memory addresses. During cycle-level simulation of the programs, memory and register

accesses are correlated with the variables known to be mapped to them.

The SPEC CPU 2000 integer and floating point benchmark suites, as well as the MiBench embedded bench-

mark suite, were simulated using the aforementioned infrastructure, to characterize the statistical distribu-

tions of the values taken on by their source-level variables. Programs in the SPEC benchmark suite are meant

to be representative of common PC and workstation applications, while the MiBench benchmark suite in-

cludes programs that are representative of a spectrum of embedded, mobile and desktop applications.

In what follows, we present the empirically measured probability distributions for free-standing variables

with the C language data types char, unsigned char (uchar), short int, int, unsigned int (uint),

long int and double, and pointers. For each benchmark, over a hundred variables of these different types

are represented. The results presented for each data type, being aggregates over each benchmark suite, thus

represent thousands of program variables, with over 10 million sample points, aggregated over time. For vari-

ables of type double, we show data for the upper 32 bits of the floating-point word, to keep the analysis

tractable — the complete probability distribution for the full 64-bit floating point representations contain over

1019 data points.

The goal in presenting the distributions discussed in this section, is to present concrete empirical evidence

of the nature of per-type variable value distributions, which are the last essential component in the value

deviation distribution derivations.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 11

Fig. 7. PMFs for variable values of several basic data types in C language benchmarks from the MiBench benchmark suite (basicmath,

bitcount, qsort, susan, jpeg, lame, typeset, dijkstra, ghostscript, stringsearch, blowfish, rijndael, sha, CRC32, FFT).

0 1´108 2´108 3´108 4´108

x

0.2

0.4

0.6

0.8

P
rH

X
=

x
L

PMF; Type: pointer

Fig. 8. PMFs for variable values of several basic data types in C language benchmarks from the SPEC CPU 2000 integer and floating point

benchmark suites (ammp, art, bzip2, cc1, equake, gzip, mcf, parser, vortex, vpr).

5.1 Value distributions

Figure 7 and Figure 8 plot the per-type value distribution PMFs aggregated across each benchmark suite. In

the figures, the horizontal axis represents values taken on by variables (the support set or sample space) and the

vertical axis represents their probabilities. The distributions observed are consistent with common intuition.

For example, across both benchmark suites, the distribution of values of type char are clustered around values

0 and the ASCII encoding value range for alphanumeric characters, 48 – 127. It is observed that for many

data types, a small fraction of values carry a disproportionately large fraction of the probability density. For

example, values close to zero are in many cases the values with the highest probability, often occurring up to a

third of the time. This is an important fact to keep in mind when considering the effects of faults at runtime. It

implies, for example, that applications partitioned over the hardware platform of Figure 1(a), are likely to mask

the typical expected faults deduced from the eye diagram in Figure 1(c). The observations are also put to use

when we develop compact representations of distributions later in the paper.

In general, the distributions of values of different types show similar trends across the different benchmark

suites (and also, as will be seen in Section 5.2, across individual programs within a suite). The distributions

showing the greatest similarity are those for the integer types (short int, int, unsigned int and long

12 ·

Table 1. Summary statistics for value distributions.

(a) MiBench

Mean Stdev. Median Mode Skewness

char 61.05 11.69 57 65 – 70 2.17

uchar 37.94 59.33 3 0 1.46

short 1640.11 7879.38 64 192 5.88

int 1.92×108 8.66×108 13 0 4.46

uint 1.05×108 6.20×108 63 0 6.23

long 5.23×108 6.59×108 2.07×106 1.07×109 0.56

double 1.54×109 1.04×109 1.10×109 0 0.98

pointer 1.35×108 4.60×107 1.51×108 1.51×108 -2.59

(b) SPEC CPU 2000

Mean Stdev. Median Mode Skewness

char 94.63 28.30 112 112 -1.22

uchar 46.44 34.58 46 15 1.01

short 481.47 2487.04 345 255 25.82

int 2.79×107 3.43×108 3 0 12.32

uint 42244.2 1.03×107 4 0 341.49

long 2.59×106 1.05×108 63 1 40.70

double 1.70×109 1.23×109 1.07×109 0 0.48

pointer 2.22×107 6.37×107 0 0 3.62

gcc (SPEC INT)bzip2 (SPEC INT)art (SPEC FP)ammp (SPEC FP)

Fig. 9. Per-benchmark value distributions, for variables of type int in the SPEC 2000 benchmark suite.

int); this is encouraging, since these data types dominate the runtime accessed variables in most applications.

The distributions for data type double both exhibit peaks at approximately 1× 109 and 3× 109. This is a result

of the bit-level structure imposed by the IEEE 754 floating point format, as will be seen in Section 5.3. The

distributions showing the least similarity are those for the character types. This is due to the fact that variables

of type char and unsigned char are typically very dependent on program inputs, as they are often used to

hold values such as strings. Despite this, it can still be seen that some general similarity exists, as the values

taken on, across both application domains, are clustered around the values for the ASCII encoding of letters

and numbers.

Tables 1(a) and 1(b) present relevant summary statistics for the value distributions. They reinforce the ob-

servations that (1) the most likely values for integer types are closer to zero (low means and medians, generally

large positive skewness2), and (2) the most frequently occurring value is often zero (mode is zero for many

per-type value distributions).

5.2 Per-program distributions

The analyses presented thus far have been aggregates across multiple programs, over time. It was previously

observed that, even across collections of programs targeted at drastically different application domains (SPEC:

desktop/workstation, versus MiBench: embedded), the most frequently accessed data type, int, showed sig-

nificant similarity across domains. For the SPEC 2000 benchmark suite, Figure 9 illustrates the value distribu-

tions for variables of type int for several individual programs. While there are some differences in how much

probability is attached to individual values (the stems with triangle tops in the graph), the general trend ob-

served for the aggregate distribution across multiple programs holds. It is therefore acceptable to employ the

aggregate distributions observed for the benchmark suite as a general case.

2The skewness of a distribution is a measure of its asymmetry. For example, uniform and Gaussian distributions both have a skewness of

0, while an exponential distribution has a skewness of 2.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 13

0 1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

1
P

rH
V
<

i>
=

1
L

Type: char

0 1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: unsigned char

0 2 4 6 8 10 12 14
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: short int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: unsigned int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: long int

0 5 10 15 20 25 30

i

0.2

0.4

0.6

0.8

1

P
r!
V
!
i"
#
1
"

Type: double

Exponent

Sign bit
0 5 10 15 20 25 30

i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: void *

Fig. 10. PMFs for variable bit values (coordinate values) of several basic data types in C language benchmarks from the MiBench bench-

mark suite.

0 1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: char

0 1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: unsigned char

0 2 4 6 8 10 12 14
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: short int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: unsigned int

0 5 10 15 20 25 30
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: long int

0 5 10 15 20 25 30

i

0.2

0.4

0.6

0.8

1

P
r!
V
!
i"
#
1
"

Type: double

Exponent

Sign bit
0 5 10 15 20 25 30

i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: void *

Fig. 11. PMFs for variable bit values (coordinate values) of several basic data types in C language benchmarks from the SPEC CPU 2000

integer and floating point benchmark suites.

5.3 Bit-level distributions

Bit-level distributions provide an alternate view of the distribution of values taken on by variables of different

types. They indicate, for each bit in the layout of a data type, the probability of the bit taking on the logic

value 1 (versus 0). Under conditions of statistical independence between bit-level values, they can provide a

compact representation of the value distributions shown previously.

Figure 10 and Figure 11 show the bit-level PMFs for several C language data types, across the dynamic ex-

ecutions of the MiBench and SPEC CPU 2000 benchmark suites. In the figures, the horizontal axes represent

bit positions in the variables, and the vertical axes represent the probability of the given bit position taking

on the logic value 1. Across both suites of programs, the bit-level probability distributions for types int and

unsigned int show the greatest similarity, both exhibiting bit probabilities for a 1 that asymptotically ap-

proach zero with increasing bit position, and in the case of unsigned int, exhibiting a sharp drop at bit

15.

For the most-significant 32 bits of double precision floating point values, the bit-level probabilities reflect

the structure imposed by the IEEE 754 floating point format. They can be broken up into three groups: the

sign bit, exponent and significand (overlaid in Figures 10 and 11). For the upper 32 bits of the double precision

14 ·
floating-point values, the sign bit has a markedly different probability from the rest of the bits, of being a logic

1, while the upper 20 bits of the significand are distributed almost uniformly with probability of approximately

0.4, in both benchmark suites.

In order for empirical probability distributions to be used in any practical analysis, they must be repre-

sentable in a compact form. From the previous section, it is obvious that using the complete empirical prob-

ability mass function is impractical, as it contains too many points — it is therefore desirable to somehow

“compress” the distribution with a minimal loss of important information. While the bit-level probabilities

may seem to provide a compact representation for value distributions, they do not. This is due to the fact that

the random variables representing each bit position are not independent. To construct the value PMF from the

bit-level PMFs would require the joint PMFs between all bits; the specification of this joint PMF is as large as

the value distribution PMF. Approaches to abbreviating the distributions, such as curve-fitting, turn out to be

inappropriate due to the lack of smoothness in the distributions, with often drastic differences in probability

between adjacent values in the support set.

5.4 Compact representation of distributions

One approach for obtaining compact representations of value distributions is motivated by the observation

that a small number of values in the support sets (the sets of possible values) of the PMFs for most data types,

constitute a large fraction of the probability density. We will refer to these sets, for the n most-probable val-

ues, as the set φn. These most-probable values are different from frequent values distributed within mem-

ory [Yang and Gupta, 2002]. While frequent values were studied in the context of their frequency of occurrence

within the general spatial distribution of memory words, φn represents the most frequent n values and their

associated probabilities, for a given programming language data type, over the lifetime of a program.

Figures 12 and 13 show the amount of probability density in the set φn of n most-probable values versus n,

for several of the primitive data types in the C programming language, for the MiBench and SPEC CPU 2000

benchmark suites, respectively. In the figures, the horizontal axes represent the size of the collection of most

probable values, n, and the vertical axes represent the probability of a value being from this set. In many cases,

a set of 100 support values carry upwards of 60% of the probability density. Looking at the amount of density in

the sets φn however enables a precise tradeoff in the size of the fit (number of points) versus accuracy (amount

of density covered).

The set φn can therefore be used as a compact representation for value distributions. In this form, the values

in φn will be assigned probabilities according to the empirical measurements, with the remaining probability

density spread across values outside φn. For example, for n = 5, the representation for the distribution of

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 15

Fig. 12. The sets of n most probable values and their probabilities, for basic data types in C language benchmarks from the MiBench

benchmark suite.

variable values of type int, based on empirical measurements from the SPEC CPU 2000 benchmark suite is

fV (v) =

0.3028 : v = 0

0.1358 : v = 1

0.0403 : v = 2

0.0300 : v = 4

0.0228 : v = 5

1.09 × 10−10 : otherwise

,

and the corresponding compact value distribution for variable values of type int for the MiBench suite is

fV (v) =

0.1543 : v = 0

0.0749 : v = 1

0.0685 : v = 7

0.0394 : v = 2

0.0258 : v = 3

1.48 × 10−10 : otherwise

.

In the above, we have used the set φ5 for clarity of presentation; in practice, it will be more accurate to use sets

of the order of φ100. The choice as to the size of the set can be made precise by looking at the data presented in

Figures 12 and 13, and picking n based on the desired accuracy.

6. EXAMPLE APPLICATION OF FM (M): PROGRAM TRANSFORMATIONS TO BOUND VALUE DEVIATIONS

IN THE PRESENCE OF LOGIC UPSETS

The PMF fM (m) derived in previous sections, characterizes the distribution of value deviations, for a given

distribution of values taken on by program variables, fV (v), and a distribution of logic upsets that may occur

in a computing system, ft〈i〉(k).

Traditional approaches to fault tolerance, (e.g., triple modular redundancy [von Neumann, 1956], redun-

16 ·

Fig. 13. The sets of n most probable values and their probabilities, for several basic data types in C language benchmarks from the SPEC

CPU 2000 integer and floating point benchmark suites.

dant computations [Oh et al., 2002; Reis et al., 2005] or the various forms of forward error correction [Baylis,

1997]), attempt to nullify the effects of logic upsets, or to guarantee recovery from some fixed number of logic

upsets, without particular concern for the semantic disturbance caused by upsets — no consideration of the

role that different bit positions play in the digital arithmetic encoding of affected data values is made. In

many applications however, it may be acceptable for the values taken on by variables to deviate within some

bounds (i.e., different magnitudes of value deviation, m, may have different permissible probability). The

analytic framework developed in this paper enables the tolerable deviations to be stated precisely, as con-

straints on fM (m) (derived in Section 4) — a constraint on fM (m) may be expressed as an upper bound, e.g., as

Pr{M > m} ≤ g(m). This reads as “the probability that the value deviation exceeds m, should always be less

than or equal to g(m).”

The amount of value deviation tolerable, will naturally vary between applications (e.g., a datapath-

dominated signal processing application versus a control-dominated application). It will also vary within an

application. Ideally, therefore, one would like to be able to specify tolerable value deviations at the level of indi-

vidual variables, alongside their type annotation. In practice, tolerable deviations need only be specified for a

few variables, e.g., for those representing quantities in which some amount of value deviation is tolerable, such

as variables representing pixel values. The tolerable deviations that can be permitted on other variables in the

program may then be determined by dataflow analysis. In the context of the hardware platform introduced

previously in Figure 1(a), this means that forward-error-correcting codes which provide differing amounts of

protection for different bit positions, may be used in conjunction with increasing the inter-processor commu-

nication speed (and hence the probability of bit upsets). In particular, these tradeoffs may be exercised for

particular variables whose contents are transferred over the interconnect, as a result of application partition-

ing for the platform’s multiple processing elements.

With the permissible per-variable deviation distributions in hand, and with the analyses presented in this

paper, it is then possible to determine new bit-level representations (selectively adding bit-level redundancy)

that should be employed for variables when they reside in hardware structures, or are communicated across

interconnect media, that may be susceptible to logic upsets.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 17

1 f() {

2 e : const 2.71828;

3 a : int epsilon(1, 0.1);

4 b : int epsilon(x, e^(-3x));

5 c : int;

6 v : int;

7 ...

99 v = c;

100 a = 2;

101 b = a + v;

102 }

Fig. 14. Example to illustrate program-level error tolerance annotations: a : type represents variable definition.

6.1 Specifying tolerable deviation distributions in programs

One example of the manner in which language-level tolerable deviations may be specified in a programming

language is presented in Figure 14. Line 3 in the program fragment defines a variable a, of type int, with a

tolerable value deviation constraint (henceforth referred to simply as a deviation constraint)

epsilon (1, 0.1)

This constraint indicates that the programmer is willing to tolerate a value deviation of greater than 1, with

probability 0.1. An example scenario in which this might be relevant would be if the variable represents a

pixel color in an image processing application. In such a situation, small deviations in value might result in

imperceptible changes in color, and the programmer-specified constraint states precisely how much value

deviation is tolerable.

Following the analysis developed in this paper, the deviation constraint on variable a is identically the con-

straint Pr{Ma > 1} ≤ 0.1 (recall the summary of notation in Figure 3), i.e., F̄Ma
(1) ≤ 0.1, where Ma is the value

deviation random variable for variable a. Similarly, line 4 in the program fragment defines a variable b with

constraint F̄Mb
(x) ≤ e−3x. The value read into the variable v on line 99, propagates through the program to

the variable b (line 101), on which there exists a deviation-tolerance constraint. If this is the only use of the

value stored in variable v, it can also inherit the relaxation of required correctness that the deviation tolerance

constraint on b implies.

6.2 Deriving an encoding to constrain value deviation

Given tolerable deviations explicitly provided (or inferred) for program variables, as in the foregoing discus-

sion, it is possible to formulate program transformations to take advantage of these permissible value devi-

ations, in the presence of a some known worst-case distribution of logic upsets. In what follows, we use the

distribution of tolerable value deviation to determine necessary bit-level layout and redundancy (encoding) of

variables required to satisfy the programmer specified and inferred constraints.

For singly-occurring logic upsets, from Equation 5, we have an expression for the PMF, fM (m), in terms

of the PMFs fV (v) and ft〈i〉(k). These can be substituted into the expressions resulting from the language level

constraints, to obtain an inequality in which the only unknown is the ft〈i〉(k) which would be required to ensure

the inequality holds. For singly-occurring upsets, from Equation 5 and language-level constraints of the form

18 ·
Pr{M > m} ≤ g(m), we obtain:

1 −

m∑

k=0

(
2

n−1∑

a=0

(
n−1∑

i=0

fV (a + 2i)ft〈i〉(0) +

n−1∑

i=0

fV (a − 2i)ft〈i〉(1)

+

n−1∑

i=0

ft〈i〉(V〈i〉)fV (a)

)

fV (a − m) +

2
n−1∑

a=0

(
n−1∑

i=0

fV (a + 2i)ft〈i〉(0)

+

n−1∑

i=0

fV (a − 2i)ft〈i〉(1) +

n−1∑

i=0

ft〈i〉(V〈i〉)fV (a)

)

fV (a + m)

)

≤ g(m). (6)

Given values of m and g(m), chosen by a programmer as part of the type ascription of a variable (Section 6.1),

and given an fV (v) (determined empirically in Section 5), we can determine the particular ft〈i〉(k), which we

shall call f
req

t〈i〉 (k), necessary to provide a solution to Equation 6. Knowing this required f
req

t〈i〉 (k), then, given

an fBER
t〈i〉 (k), resulting from a particular observed bit error rate (BER) for a particular hardware platform and

operating environment, our goal is then to introduce redundancy at the level of bits, to reduce the effect of

logic-upset-inducing events, from fBER
t〈i〉 (k) to f

req

t〈i〉 (k).

7 6 5 4 3 2 1 0 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0

(b) Per-bit repetition code for all bits; probability of uncorrected error per unencoded bit ≤ p2 ≤ 1

7 6 5 4 3 2 1 0

(a) Unencoded word; probability of uncorrected

error in per unencoded bit = p ≤ 1

7 6 5 4 3 2 1 0 7 7 7 6 6 6 5 5 5 4 3 2 1 0

(d) Per-bit repetition code for bits that must be protected to satisfy value deviation constraint.

 Probability of uncorrected error per unencoded bit that must be protected ≤ p2 ≤ 1

7 6 5 4 3 2 1 0

(c) Generalized Hamming code; probability of uncorrected error per unencoded bit = p2 ≤ 1

6 5 4 3 2 1 07

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(e) Generalized Hamming code for bits that must be protected to satisfy deviation constraint.

 Probability of uncorrected error per unencoded bit that must be protected ≤ p2 ≤ 1

Bit value= bit position in unencoded word

= bit position corresponding to added redundancy / code word

Fig. 15. Encoding for deviation tolerance.

As a concrete example, Figure 15 illustrates different methods for encoding unsigned 8-bit words to enable

forward error correction of single logic upsets, reducing the probability of an uncorrected error from p to p2.

For example, let logic upsets occur with probability p, e.g., p = 10−14 per hour, where it is desired to have a

probability of uncorrected faults of at most p = 10−28. The naive approach (Figure 15(b)) is to replicate each

bit of the word (or the entire word) five times, and to take a majority vote for each bit position. Figure 15(c)

shows the reduction in overhead using a simple but more intelligent generalized Hamming code [Baylis, 1997].

If on the other hand it was desired, not to reduce the probability of error to p = 10−28, but rather to reduce

the probability of value deviation caused by an upset, of magnitude greater than 32 (say), to 10−28, this would

mean (in the case of the single upset assumption), that only the most significant three bits would need to be

replicated (Figure 15(d)) or encoded (Figure 15(e)). Similarly, a requirement of the probability of deviations

greater than x, of 126.765
x20 , sets the same constraint on deviations of magnitude 32 being 10−28, but also permits

deviations of magnitude 128, as long as they only occur with probability of 9.095 × 10−41.

Deviation-Tolerant Computation in Concurrent Failure-Prone Hardware · 19

0 50 100 150 200 250

x

0.01

0.02

0.03

0.04

P
rH

X
=

x
L

PMF; Type: unsigned char

0 1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

1

P
rH

V
<

i>
=

1
L

Type: unsigned char

0
0.2

0.4
0.6

0.8

1

A
0

20

40

60

m
0

0.2
0.4
0.6
0.8

1

ft

0
0.2

0.4
0.6

0.8A

Fig. 16. Example empirical value distributions, fV (v), empirical bit state probabilities, and required bit upset probability given program-

level constraints of Pr{M > m} ≤ A as a function of m and A.

To illustrate, consider a scenario in which the logic upset phenomenon affects all bits with equal probability,

thus ft〈i〉(k) = ft. Examples of the variation of the required ft as a function of both the tolerable value devi-

ation, m, and the probability bound on the tolerable error, g(m) = constant = A, is shown in Figure 16. The

empirical distributions in the figure are aggregates for variables of data type unsigned char, across applica-

tions from the MiBench benchmark suite. Each point on the surface in the figure represents an upper bound

on the required ft that will satisfy the corresponding constraints m and A. In the plot, for small magnitudes of

permissible value deviation, m, and for small associated likelihood of such deviation being exceeded, A, the re-

quired worst-case bit upset probability approaches zero. As the amount (m) and probability (A) of permissible

value deviation increase, so also does the permissible worst-case bit upset probability.

One simplistic approach to encoding is to employ bit-level replication, and to perform a majority vote over

the replicated bits. From the required ft shown in Figure 16, the amount of replication required, given a hard-

ware substrate with logic upset PMF fBER
t〈i〉 (k), is given by:

2

⌈

log(ft)

log(fBER
t〈i〉 (k))

⌉

+ 1 (7)

6.3 Other applications of the analyses

The analyses presented thus far could be employed for purposes other than bounding value deviation un-

der tolerance constraints. For example, when the bit upset probability required to satisfy a program’s con-

straints are weaker than the bit upset rate of the hardware on which the said programs execute, probabilistic

computations, which proceed with some probability of error, can be employed. Such computations have the

potential to be performed at lower energy cost, and are an area of active research [Palem, 2003]. Another exam-

ple application of the analysis is aggressive voltage scaling for application phases for which all the computed

results can be proven to be tolerable of some amount of value deviation. By aggressively reducing operat-

ing voltage below thresholds required for guaranteed safe operation of circuits (permitting a minimum noise

margin to be maintained), significant power consumption savings can be attained. Yet other applications

include probabilistic analysis of programs [Rinard, 2006] and probabilistic techniques for ensuring program

safety [Berger and Zorn, 2006].

20 ·
7. SUMMARY AND FUTURE WORK

Single- and multi-bit logic upsets, when occurring in machine state representing integer- or real-valued pro-

gram variables, may lead to errors that can be expressed in terms of a value deviation or error-containing

value distribution. This paper presented analyses characterizing the probability mass functions for the value

deviation, fM (m), and error-containing values, fW (w), in terms of the distribution of error-free values, fV (v),

an empirical property, and the spatio-temporal distribution of logic upsets, ft〈i〉(k), a function of the operat-

ing environment, hardware and fault model. The analyses have applications in program transformations for

trading-off program reliability for error-correction overhead, or reliability for power consumption. Detailed

empirical characterizations of the error-free value distributions for a comprehensive suite of applications was

presented, as well as techniques for compactly representing these distributions to facilitate their use in the

analyses, and the theoretical and quantitative contributions of the paper were presented in the context of a

concrete hardware platform that exhibits the properties assumed by the analyses. Current directions include

extending the analysis to floating point data types, where their approximate real-valued nature permits inter-

esting new directions.

References

R. C. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor Technologies. 5(3):305–316, september 2005.

J. Baylis. Error Correcting Codes: A Mathematical Introduction. Chapman & Hall/CRC, 1997.

E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety for unsafe languages. SIGPLAN Not., 41(6):158–168, 2006. ISSN 0362-1340.

D. Brooks and M. Martonosi. Dynamically Exploiting Narrow Width Operands to Improve Processor Power and Performance. In HPCA, pages 13–22, 1999.

M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein. BitValue Inference: Detecting and Exploiting Narrow Bitwidth Computations. In Euro-Par ’00: Proceedings
from the 6th International Euro-Par Conference on Parallel Processing, pages 969–979, London, UK, 2000. Springer-Verlag. ISBN 3-540-67956-1.

B. Calder, P. Feller, and A. Eustace. Value profiling. In MICRO 30: Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture,
pages 259–269, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7977-8.

E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj. Sram ser in 90, 130 and 180 nm bulk and soi technologies. In ICS ’06: Proceedings of the
42nd Reliability Physics Symposium Proceedings, pages 300–304, New York, NY, USA, April 2004. IEEE.

W. Heidergott. SEU Tolerant Device, Circuit and Processor Design. In DAC ’05: Proceedings of the 42nd annual conference on Design automation, pages 5–10,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-058-2.

R. W. Horst, R. L. Harris, and R. L. Jardine. Multiple instruction issue in the NonStop cyclone processor. In ISCA ’90: Proceedings of the 17th annual interna-
tional symposium on Computer Architecture, pages 216–226, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-366-3.

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value prediction. In ASPLOS-VII: Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems, pages 138–147, New York, NY, USA, 1996. ACM Press. ISBN 0-89791-767-7.

S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood. Bitwidth Cognizant Architecture Synthesis of Custom Hardware Accelerators. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Synthesis, 20(11):1355–1371, November 2001.

S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. Measuring architectural vulnerability factors. IEEE Micro, 23(6):70–75, 2003. ISSN
0272-1732.

N. Oh, S. Mitra, and E. J. McCluskey. ED4I: Error detection by diverse data and duplicated instructions. IEEE Trans. Computers, 51(2):180–199, 2002.

K. V. Palem. Energy aware algorithm design via probabilistic computing: from algorithms and models to moore’s law and novel (semiconductor) devices. In
CASES ’03: Proceedings of the 2003 international conference on Compilers, architecture and synthesis for embedded systems, pages 113–116, New York, NY,
USA, 2003. ACM Press. ISBN 1-58113-676-5.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S. Mukherjee. Software-controlled fault tolerance. ACM Trans. Archit. Code Optim., 2(4):
366–396, 2005. ISSN 1544-3566.

M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In ICS ’06: Proceedings of the 20th annual international conference
on Supercomputing, pages 324–334, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-282-8.

N. R. Saxena and W. K. McCluskey. Control-flow checking using watchdog assists and extended-precision checksums. IEEE Trans. Comput., 39(4):554–559,
1990. ISSN 0018-9340.

T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro, E. M.
Schwarz, K. Shum, and C. F. Webb. IBM’s S/390 G5 Microprocessor design. IEEE Micro, 19:12–23, Mar. 1999.

R. Stallman and R. H. Pesch. Debugging with GDB: the GNU source-level debugger. Free Software Foundation, Inc., pub-FSF:adr, 4.09 for GDB version 4.9
edition, 1993. Previous edition published under title: The GDB manual. August 1993.

P. Stanley-Marbell and D. Marculescu. Sunflower: Full-System, Embedded Microarchitecture Evaluation. 2nd European conference on High Performance
Embedded Architectures and Computers (HiPEAC 2007) / Lecture Notes on Computer Science, 4367:168–182, 2007.

M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application to silicon compilation. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages 108–120, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-199-2.

Texas Instruments, Inc. Datasheet, MSP430x22x2, MSP430x22x4 Mixed Signal Microcontroller. 2006.

J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, pages 43–98, 1956.

D. Walker, L. Mackey, J. Ligatti, G. Reis, and D. August. Static typing for a faulty lambda calculus. In ACM SIGPLAN International Conference on Functional
Programming, New York, NY, USA, September 2006. ACM Press.

V. Wong and M. Horowitz. Soft Error Resilience of Probabilistic Inference Applications. In Proceedings of the Workshop on System Effects of Logic Soft Errors,
March 2006.

J. Yang and R. Gupta. Frequent value locality and its applications. Trans. on Embedded Computing Sys., 1(1):79–105, 2002. ISSN 1539-9087.

	Introduction
	A motivating hardware platform
	Other sources of temporary logic upsets in hardware and software
	Contributions and paper outline

	Related Research
	Terminology, Definitions, and Assumptions
	Per-Type Distributions of Value Deviations in Programs
	Error-containing value PMF, fW(w), unsigned n-bit values, single logic upsets
	Error-containing value PMF, fW(w), unsigned n-bit values, multiple independent logic upsets
	Another illustrative example
	Analytic Expressions for Variable Value Deviation

	Empirical Distributions
	Value distributions
	Per-program distributions
	Bit-level distributions
	Compact representation of distributions

	Example Application of fM(m): Program Transformations to Bound Value Deviations in the Presence of Logic Upsets
	Specifying tolerable deviation distributions in programs
	Deriving an encoding to constrain value deviation
	Other applications of the analyses

	Summary and Future Work

