2,934 research outputs found

    Spending time with money: from shared values to social connectivity

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.There is a rapidly growing momentum driving the development of mobile payment systems for co-present interactions, using near-field communication on smartphones and contactless payment systems. The design (and marketing) imperative for this is to enable faster, simpler, effortless and secure transactions, yet our evidence shows that this focus on reducing transactional friction may ignore other important features around making payments. We draw from empirical data to consider user interactions around financial exchanges made on mobile phones. Our findings examine how the practices around making payments support people in making connections, to other people, to their communities, to the places they move through, to their environment, and to what they consume. While these social and community bonds shape the kinds of interactions that become possible, they also shape how users feel about, and act on, the values that they hold with their co-users. We draw implications for future payment systems that make use of community connections, build trust, leverage transactional latency, and generate opportunities for rich social interactions

    Symmetric Operation of the Resonant Exchange Qubit

    Full text link
    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated RF pulses. At the resulting three-dimensional sweet spot the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between RF drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to n = 32 {\pi} pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of partial sweet spots in the operation and long-distance coupling of triple-dot qubits.Comment: 6 pages, 5 figure

    Negative spin exchange in a multielectron quantum dot

    Full text link
    By operating a one-electron quantum dot (fabricated between a multielectron dot and a one-electron reference dot) as a spectroscopic probe, we study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation number. We observe that the multielectron groundstate transitions from spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of non-trivial multielectron spin exchange correlations.Comment: 8 pages, including 4 main figures and 2 supplementary figurure

    Meta-awareness during day and night: the relationship between mindfulness and lucid dreaming.

    Get PDF
    The present study explored the relationship between lucidity in dreams (awareness of dreams while dreaming) and mindfulness during wakefulness, also considering meditation as a possible moderating variable. An online survey was completed by 528 respondents, of whom 386 (73.1%) had lucid dream experiences. The reported frequency of lucid dreams was found to be positively related to higher dispositional mindfulness in wakefulness. This relationship was only present in those participants who reported acquaintance with meditation. Regarding the dimensions of mindfulness, lucid dream frequency was more strongly associated with mindful presence rather than acceptance. The findings support the notion of an existing relationship between lucidity in dreams and mindfulness during wakefulness, yet it remains unclear whether the relationship is influenced by actual meditation practice or whether it reflects some natural predispositions. Future studies should examine the role of different meditation practices, investigate personality variables that might influence the relationship, and explore how different facets of mindfulness and lucidity interrelate. Keywords: lucid dreaming; mindfulness; meditatio

    Noise suppression using symmetric exchange gates in spin qubits

    Full text link
    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.Comment: 5 pages main text (4 figures) plus 5 pages supplemental information (3 figures

    Fast spin exchange between two distant quantum dots

    Get PDF
    The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamental electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5 supplementary figure

    Spectrum of the Nuclear Environment for GaAs Spin Qubits

    Full text link
    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over six orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f21/f^2 for frequency f ⁣ ⁣1f \! \gtrsim \! 1 Hz. Increasing the applied magnetic field from 0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which decreases spectral content in the 1/f21/f^2 region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime ( ⁣16\lesssim \! 16 π\pi-pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime ( ⁣32\gtrsim \! 32 π\pi-pulses), where longitudinal Overhauser fluctuations with a 1/f1/f spectrum dominate.Comment: 6 pages, 4 figures, 8 pages of supplementary material, 5 supplementary figure

    Magnetism and unconventional superconductivity in Cen_nMm_mIn3n+2m_{3n+2m} heavy-fermion crystals

    Full text link
    We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Cen_nMm_mIn3n+2m_{3n+2m} (M=Co, Rh, Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point.Comment: submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Entrainment rates and microphysics in POST stratocumulus

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1002/jgrd.50878An aircraft field study (POST; Physics of Stratocumulus Top) was conducted off the central California coast in July and August 2008 to deal with the known difficulty of measuring entrainment rates in the radiatively important stratocumulus (Sc) prevalent in that area. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter research aircraft flew 15 quasi-Lagrangian flights in unbroken Sc and carried a full complement of probes including three high-data-rate probes: ultrafast temperature probe, particulate volume monitor probe, and gust probe. The probes’ colocation near the nose of the Twin Otter permitted estimation of entrainment fluxes and rates with an in-cloud resolution of 1m. Results include the following: Application of the conditional sampling variation of classical mixed layer theory for calculating the entrainment rate into cloud top for POST flights is shown to be inadequate for most of the Sc. Estimated rates resemble previous results after theory is modified to take into account both entrainment and evaporation at cloud top given the strong wind shear and mixing at cloud top. Entrainment rates show a tendency to decrease for large shear values, and the largest rates are for the smallest temperature jumps across the inversion. Measurements indirectly suggest that entrained parcels are primarily cooled by infrared flux divergence rather than cooling from droplet evaporation, while detrainment at cloud top causes droplet evaporation and cooling in the entrainment interface layer above cloud top.NSF supported H. Gerber, G. Frick, and S. Malinowski (ATM-0735121, AGS-1020445), D. Khelif (ATM-0734323), and S. Krueger (ATM-0735118). The Office of Naval Research and the Naval Postgraduate School supported in part the deployment of the Twin Otter aircraft

    All-optical control of ferromagnetic thin films and nanostructures

    Full text link
    The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic switching without any applied magnetic fields using laser pulses of the circular polarized light has been observed for specific ferrimagnetic materials. Here we demonstrate, for the first time, optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed. These results challenge the current theoretical understanding and will have a major impact on data memory and storage industries via the integration of optical control of ferromagnetic bits.Comment: 21 pages, 11 figure
    corecore