6,177 research outputs found

    Application of special-purpose digital computers to rotorcraft real-time simulation

    Get PDF
    The use of an array processor as a computational element in rotorcraft real-time simulation is studied. A multilooping scheme was considered in which the rotor would loop over its calculations a number of time while the remainder of the model cycled once on a host computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical host-array processor computing configuration. The multilooping of an expanded rotor model, which included appropriate kinematic equations, resulted in an accurate and stable simulation

    Assessing the Value of Time Travel Savings – A Feasibility Study on Humberside.

    No full text
    It is expected that the opening of the Humber Bridge will cause major changes to travel patterns around Humberside; given the level of tolls as currently stated, many travellers will face decisions involving a trade-off between travel time, money outlay on tolls or fares and money outlay on private vehicle running costs; this either in the context of destination choice, mode choice or route choice. This report sets out the conclusions of a preliminary study of the feasibility of inferring values of travel time savings from observations made on the outcomes of these decisions. Methods based on aggregate data of destination choice are found t o be inefficient; a disaggregate mode choice study i s recommended, subject to caveats on sample size

    A real-time, dual processor simulation of the rotor system research aircraft

    Get PDF
    A real-time, man-in-the loop, simulation of the rotor system research aircraft (RSRA) was conducted. The unique feature of this simulation was that two digital computers were used in parallel to solve the equations of the RSRA mathematical model. The design, development, and implementation of the simulation are documented. Program validation was discussed, and examples of data recordings are given. This simulation provided an important research tool for the RSRA project in terms of safe and cost-effective design analysis. In addition, valuable knowledge concerning parallel processing and a powerful simulation hardware and software system was gained

    Variability in spawning frequency and reproductive development of the narrow-barred Spanish mackerel (Scomberomorus commerson) along the west coast of Australia

    Get PDF
    The narrow-barred Spanish mackerel (Scomberomorus commerson) is widespread throughout the Indo-West Pacific region. This study describes the reproductive biology of S. commerson along the west coast of Australia, where it is targeted for food consumption and sports fishing. Development of testes occurred at a smaller body size than for ovaries, and more than 90% of males were sexually mature by the minimum legal length of 900 mm TL compared to 50% of females. Females dominated overall catches although sex ratios within daily catches vary considerably and females were rarely caught when spaw n ing. Scomberomorus commerson are seasonally abundant in coastal waters and most of the commercial catch is taken prior to the reproductive season. Spawning occurs between about August and November in the Kimberley region and between October and January in the Pilbara region. No spawning activity was recorded in the more southerly West Coast region, and only in the north Kimberley region were large numbers of fish with spawning gonads collected. Catches dropped to a minimum when spawning began in the Pilbara region, when fish became less abundant in inshore waters and inclement weather conditions limited fishing on still productive offshore reefs. Final maturation and ovulation of oocytes took place within a 24-hour period, and females spawned in the afternoon-evening every three days. A third of these spawning females released batches of eggs on consecutive days. Relationships between length, weight, and batch fecundity are presented

    Sub-Natural-Linewidth Quantum Interference Features Observed in Photoassociation of a Thermal Gas

    Full text link
    By driving photoassociation transitions we form electronically excited molecules (Na2_2^*) from ultra-cold (50-300 μ\muK) Na atoms. Using a second laser to drive transitions from the excited state to a level in the molecular ground state, we are able to split the photoassociation line and observe features with a width smaller than the natural linewidth of the excited molecular state. The quantum interference which gives rise to this effect is analogous to that which leads to electromagnetically induced transparency in three level atomic Λ\Lambda systems, but here one of the ground states is a pair of free atoms while the other is a bound molecule. The linewidth is limited primarily by the finite temperature of the atoms.Comment: 4 pages, 5 figure

    Rogue decoherence in the formation of a macroscopic atom-molecule superposition

    Get PDF
    We theoretically examine two-color photoassociation of a Bose-Einstein condensate, focusing on the role of rogue decoherence in the formation of macroscopic atom-molecule superpositions. Rogue dissociation occurs when two zero-momentum condensate atoms are photoassociated into a molecule, which then dissociates into a pair of atoms of equal-and-opposite momentum, instead of dissociating back to the zero-momentum condensate. As a source of decoherence that may damp quantum correlations in the condensates, rogue dissociation is an obstacle to the formation of a macroscopic atom-molecule superposition. We study rogue decoherence in a setup which, without decoherence, yields a macroscopic atom-molecule superposition, and find that the most favorable conditions for said superposition are a density ~ 1e12 atoms per cc and temperature ~ 1e-10.Comment: 10 pages, 4 figures, 46+ references; submitted to PR

    The Effect of Natural Dissolved Organic Carbon on the Acute Toxicity of Copper to Larval Freshwater Mussels (\u3cem\u3eGlochidia\u3c/em\u3e)

    Get PDF
    The present study examined the effect of dissolved organic carbon (DOC), both added and inherent, on Cu toxicity in glochidia, the larvae of freshwater mussels. Using incremental additions of natural DOC concentrate and reconstituted water, a series of acute copper toxicity tests were conducted. An increase in DOC from 0.7 to 4.4 mg C/L resulted in a fourfold increase (36–150 μg Cu/L) in the 24-h median effective concentration (EC50) and a significant linear relationship (r2=0.98, p=0.0008) between the DOC concentration and the Cu EC50 of Lampsilis siliquoidea glochidia. The ameliorating effect of added DOC on Cu toxicity was confirmed using a second mussel species, the endangered (in Canada) Lampsilis fasciola. The effect of inherent (i.e., not added) DOC on Cu toxicity was also assessed in eight natural waters (DOC 5–15 mg C/L). These experiments revealed a significant relationship between the EC50 and the concentration of inherent DOC (r2=0.79, p=0.0031) with EC50s ranging from 27 to 111 μg Cu/L. These laboratory tests have demonstrated that DOC provides glochidia with significant protection from acute Cu toxicity. The potential risk that Cu poses to mussel populations was assessed by comparing Cu and DOC concentrations from significant mussel habitats in Ontario to the EC50s. Although overall mean Cu concentration in the mussel’s habitat was well below the acutely toxic level given the concentration of DOC, episodic Cu releases in low DOC waters may be a concern for the recovery of endangered freshwater mussels. The results are examined in the context of current Cu water quality regulations including the U.S. Environmental Protection Agency’s (U.S. EPA) biotic ligand model
    corecore