3,607 research outputs found

    The Variation of Integrated Star IMFs among Galaxies

    Full text link
    The integrated galaxial initial mass function (IGIMF) is the relevant distribution function containing the information on the distribution of stellar remnants, the number of supernovae and the chemical enrichment history of a galaxy. Since most stars form in embedded star clusters with different masses the IGIMF becomes an integral of the assumed (universal or invariant) stellar IMF over the embedded star-cluster mass function (ECMF). For a range of reasonable assumptions about the IMF and the ECMF we find the IGIMF to be steeper (containing fewer massive stars per star) than the stellar IMF, but below a few Msol it is invariant and identical to the stellar IMF for all galaxies. However, the steepening sensitively depends on the form of the ECMF in the low-mass regime. Furthermore, observations indicate a relation between the star formation rate of a galaxy and the most massive young stellar cluster in it. The assumption that this cluster mass marks the upper end of a young-cluster mass function leads to a connection of the star formation rate and the slope of the IGIMF above a few Msol. The IGIMF varies with the star formation history of a galaxy. Notably, large variations of the IGIMF are evident for dE, dIrr and LSB galaxies with a small to modest stellar mass. We find that for any galaxy the number of supernovae per star (NSNS) is suppressed relative to that expected for a Salpeter IMF. Dwarf galaxies have a smaller NSNS compared to massive galaxies. For dwarf galaxies the NSNS varies substantially depending on the galaxy assembly history and the assumptions made about the low-mass end of the ECMF. The findings presented here may be of some consequence for the cosmological evolution of the number of supernovae per low-mass star and the chemical enrichment of galaxies of different mass.Comment: 27 pages, accepted for publication by Ap

    Draft Genome Sequence for Desulfovibrio africanus Strain PCS.

    Get PDF
    Desulfovibrio africanus strain PCS is an anaerobic sulfate-reducing bacterium (SRB) isolated from sediment from Paleta Creek, San Diego, CA. Strain PCS is capable of reducing metals such as Fe(III) and Cr(VI), has a cell cycle, and is predicted to produce methylmercury. We present the D. africanus PCS genome sequence

    A Raman study of the Charge-Density-Wave State in A0.3_{0.3}MoO3_3 (A = K,Rb)

    Get PDF
    We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The temperature and polarization dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon mode in both materials differ by about 3 cm, thus revealing the role of alkali atom. We discus the observed vibrational features in terms of charge-density-wave ground state accompanied by change in the crystal symmetry. A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports the first-order lock-in transition, unlike \rb. The unusually sharp Raman lines(limited by the instrumental response) at very low temperatures and their temperature evolution suggests that the decay of the low energy phonons is strongly influenced by the presence of the temperature dependent charge density wave gap.Comment: 13 pages, 7 figure

    A Late-Time Flattening of Afterglow Light Curves

    Full text link
    We present a sample of radio afterglow light curves with measured decay slopes which show evidence for a flattening at late times compared to optical and X-ray decay indices. The simplest origin for this behavior is that the change in slope is due to a jet-like outflow making a transition to sub-relativistic expansion. This can explain the late-time radio light curves for many but not all of the bursts in the sample. We investigate several possible modifications to the standard fireball model which can flatten late-time light curves. Changes to the shock microphysics which govern particle acceleration, or energy injection to the shock (either radially or azimuthally) can reproduce the observed behavior. Distinguishing between these different possibilities will require simultaneous optical/radio monitoring of afterglows at late times.Comment: ApJ, submitte

    Work probability distribution and tossing a biased coin

    Full text link
    We show that the rare events present in dissipated work that enters Jarzynski equality, when mapped appropriately to the phenomenon of large deviations found in a biased coin toss, are enough to yield a quantitative work probability distribution for Jarzynski equality. This allows us to propose a recipe for constructing work probability distribution independent of the details of any relevant system. The underlying framework, developed herein, is expected to be of use in modelling other physical phenomena where rare events play an important role.Comment: 6 pages, 4 figures

    GRB Energetics and the GRB Hubble Diagram: Promises and Limitations

    Full text link
    We present a complete sample of 29 GRBs for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically-corrected gamma-ray energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this value is a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams, that the current sample cannot place meaningful constraints upon the fundamental parameters of the Universe. Indeed for GRBs to ever be useful in cosmographic measurements we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically-derived and physically ill-understood distance indicators. Second, a more homogeneous set should be constructed by culling sub-classes from the larger sample. These sub-classes, though now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous by factors of at least 10 and exhibit a rapid fading at early times. About 10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3 Postscript figure

    The nature of GRB-selected submillimeter galaxies: hot and young

    Full text link
    We present detailed fits of the spectral energy distributions (SEDs) of four submillimeter (submm) galaxies selected by the presence of a gamma-ray burst (GRB) event (GRBs 980703, 000210, 000418 and 010222). These faint ~3 mJy submm emitters at redshift ~1 are characterized by an unusual combination of long- and short-wavelength properties, namely enhanced submm and/or radio emission combined with optical faintness and blue colors. We exclude an active galactic nucleus as the source of long-wavelength emission. From the SED fits we conclude that the four galaxies are young (ages <2 Gyr), highly starforming (star formation rates ~150 MSun/yr), low-mass (stellar masses ~10^10 MSun) and dusty (dust masses ~3x10^8 MSun). Their high dust temperatures (Td>45 K) indicate that GRB host galaxies are hotter, younger, and less massive counterparts to submm-selected galaxies detected so far. Future facilities like Herschel, JCMT/SCUBA-2 and ALMA will test this hypothesis enabling measurement of dust temperatures of fainter GRB-selected galaxies.Comment: 9 pages, 2 figures, submitted to ApJ, for SED templates, see http://archive.dark-cosmology.dk

    Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C

    Get PDF
    Metamorphism is thought to destroy microfossils, partly through devolatilization and graphitization of biogenic organic matter. However, the extent to which there is a loss of molecular, elemental and isotope signatures from biomass during high-temperature metamorphism is not clearly established. We report on graphitic structures inside and coating apatite grains from the c. 1850 Ma Michigamme silicate banded iron formation from Michigan, metamorphosed above 550°C. Traces of N, S, O, H, Ca and Fe are preserved in this graphitic carbon and X-ray spectra show traces of aliphatic groups. Graphitic carbon has an expanded lattice around 3.6 Å, forms microscopic concentrically-layered and radiating polygonal flakes and has homogeneous δ13C values around −22‰, identical to bulk analyses. Graphitic carbon inside apatite is associated with nanometre-size ammoniated phyllosilicate. Precursors of these metamorphic minerals and graphitic carbon originated from ferruginous clayrich sediments with biomass. We conclude that graphite coatings and inclusions in apatite grains indicate fluid remobilization during amphibolite-facies metamorphism of precursor biomass. This new evidence fills in observational gaps of metamorphosed biomass into graphite and supports the existence of biosignatures in the highly metamorphosed iron formation from the Eoarchean Akilia Association, which dates from the beginning of the sedimentary rock record

    Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum.

    Get PDF
    The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45
    corecore