311 research outputs found

    Critical Evaluation of Gamma-Irradiated Serum Used as Feeder in the Culture and Demonstration of Putative Nanobacteria and Calcifying Nanoparticles

    Get PDF
    The culture and demonstration of putative nanobacteria (NB) and calcifying nanoparticles (CNP) from human and animal tissues has relied primarily on the use of a culture supplement consisting of FBS that had been γ-irradiated at a dose of 30 kGy (γ-FBS). The use of γ-FBS is based on the assumption that this sterilized fluid has been rid entirely of any residual NB/CNP, while it continues to promote the slow growth in culture of NB/CNP from human/animal tissues. We show here that γ-irradiation (5–50 kGy) produces extensive dose-dependent serum protein breakdown as demonstrated through UV and visible light spectrophotometry, fluorometry, Fourier-transformed infrared spectroscopy, and gel electrophoresis. Yet, both γ-FBS and γ-irradiated human serum (γ-HS) produce NB/CNP in cell culture conditions that are morphologically and chemically indistinguishable from their normal serum counterparts. Contrary to earlier claims, γ-FBS does not enhance the formation of NB/CNP from several human body fluids (saliva, urine, ascites, and synovial fluid) tested. In the presence of additional precipitating ions, both γ-irradiated serum (FBS and HS) and γ-irradiated proteins (albumin and fetuin-A) retain the inherent dual NB inhibitory and seeding capabilities seen also with their untreated counterparts. By gel electrophoresis, the particles formed from both γ-FBS and γ-HS are seen to have assimilated into their scaffold the same smeared protein profiles found in the γ-irradiated sera. However, their protein compositions as identified by proteomics are virtually identical to those seen with particles formed from untreated serum. Moreover, particles derived from human fluids and cultured in the presence of γ-FBS contain proteins derived from both γ-FBS and the human fluid under investigation—a confusing and unprecedented scenario indicating that these particles harbor proteins from both the host tissue and the FBS used as feeder. Thus, the NB/CNP described in the literature clearly bear hybrid protein compositions belonging to different species. We conclude that there is no basis to justify the use of γ-FBS as a feeder for the growth and demonstration of NB/CNP or any NB-like particles in culture. Moreover, our results call into question the validity of the entire body of literature accumulated to date on NB and CNP

    Alternative functions for the multifarious inflammasome

    Get PDF
    The inflammasome has been mainly studied in innate immune cells in which it senses microbes and cellular damage, and induces secretion of pro-inflammatory cytokines. This process induces an inflammatory response that is critical for the resolution of infections and repair of tissue damage following injury. Recent studies indicate that inflammasome complex formation also participates in many other cellular and physiological processes beyond modulation of inflammation, such as autophagy, metabolism, eicosanoids production, and phagosome maturation

    Separate metabolic pathways leading to DNA fragmentation and apoptotic nuclear chromatin condensation

    Get PDF
    Apoptosis is the predominant form of cell death observed in a variety of physiological and pathological conditions such as cancer involution, insect metamorphosis, the development of the immune and nervous systems, and embryogenesis. The typical nuclear changes taking place in apoptotic cells include extensive condensation of chromatin and internucleosomal DNA fragmentation into units of 200 base pairs. However, the mechanisms responsible for both chromatin condensation and DNA fragmentation have yet to be elucidated. In this study, micrococcal nuclease and the divalent cations, Ca2+ and Mg2+, were applied to isolated nuclei in an attempt to reconstitute in vitro the digestion of genomic DNA associated with apoptosis. Micrococcal nuclease was found to induce a typical pattern of DNA fragmentation, but did not give rise to chromatin condensation, whereas Ca2+/Mg2+ induced both chromatin condensation and DNA fragmentation in isolated mouse liver nuclei. When the endonuclease inhibitor ZnCl2 was used, the DNA fragmentation induced by Ca2+/Mg2+ in nuclei could be completely inhibited, but chromatin condensation still occurred. For comparison, intact liver cells were treated with valinomycin, a potassium ionophore, which gave rise to an atypical cell death, with chromatin condensation appearing without DNA fragmentation. Our results suggest that endonuclease activation in apoptosis is neither necessary nor sufficient to induce chromatin condensation, and that DNA fragmentation and chromatin condensation may be triggered through separate pathways during apoptosis

    Plant and fungal products that extend lifespan in caenorhabditis elegans

    Get PDF
    The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans

    Plant and fungal products that extend lifespan in caenorhabditis elegans

    Get PDF
    The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans

    Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1.

    Get PDF
    Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1β by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs
    • …
    corecore