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Separate Metabolic Pathways Leading to DNA 
Fragmentation and Apoptotic Chromatin 
Condensation 
By Dexter  Y. Sun, Shibo Jiang,* Li-Mou Zheng, David M. Ojcius,~ 
and John  Ding-E Young 

From the Laboratory of Molecular Imrnunolog 7 and Cell Biolog 7, The Roc~feller UniversitT, 
New York 10021-6399; the *Laboratory of Biochemical VirologT, The New York Blood Center, 
New York, 10021; and *Unitt de Biologie Mol~culaire du C~e, lnstitut Pasteur, 75724 Paris 
Cedex 15, France 

Summary 

Apoptosis is the predominant form of cell death observed in a variety of physiological and 
pathological conditions such as cancer involution, insect metamorphosis, the development of 
the immune and nervous systems, and embryogeuesis. The typical nuclear changes taking place 
in apoptotic cells include extensive condensation of chromatin and internucleosomal DNA 
fragmentation into units of 200 base pairs. However, the mechanisms responsible for both chromatin 
condensation and DNA fragmentation have yet to be duddated. In this study, micrococcal nudease 
and the divalent cations, Ca z+ and Mg z+, were applied to isolated nuclei in an attempt to 
reconstitute in vitro the digestion of genomic DNA associated with apoptosis. Micrococcal nudease 
was found to induce a typical pattern of DNA fragmentation, but did not give rise to chromatin 
condensation, whereas Ca z +/Mg 2 + induced both chromatin condensation and DNA fragmenta- 
tion in isolated mouse liver nuclei. When the endonuclease inhibitor ZnCh was used, the DNA 
fragmentation induced by Ca z +/Mg 2 + in nuclei could be completdy inhibited, but chromatin 
condensation still occurred. For comparison, intact liver cells were treated with valinomycin, 
a potassium ionophore, which gave rise to an atypical cell death, with chromatin condensation 
appearing without DNA fragmentation. Our results suggest that endonuclease activation in 
apoptosis is neither necessary nor suff~deut to induce chromatin condensation, and that DNA 
fragmentation and chromatin condensation may be triggered through separate pathways during 
apoptosis. 

T wo types of cell death, referred to as apoptosis and 
necrosis, have usually been described (1-5). Apoptosis, 

in which the cell actively participates in its demise, is charac- 
terized by interuucleosomal DNA fragmentation, chromatin 
condensation, and cytoplasmic blebbing. At the early stages 
of this process, there are no noticeable structural changes oc- 
curring within mitochondria or other cytoplasmic organdies 
(2, 6, 7). In contrast, necrosis differs both morphologically 
and biochemically from apoptosis. From the onset of necrosis, 
there is a marked dissolution of organized cytoplasmic struc- 
tures, while the nucleus remains intact (2, 4, 8). gather than 
fragmenting, the DNA breaks down at later stages into a 
heterogeneous mixture of fragments, visualized as a smear 
on gels, indicating nonspecific decomposition of the DNA. 
Apoptosis requires that the dying cell be metabolically ac- 
tive, and the process of apoptosis is often dependent on R.NA 
and protein synthesis (9, 10). Necrosis, on the other hand, 
is a passive process that proceeds independently of the meta- 
bolic state of the cell. 

Cell death by apoptosis is an essential feature of many normal 
processes and pathological conditions (11, 12). For instance, 
extensive apoptotic cell death occurs during embryonic de- 
velopment (13-15), during the hormone-regulated involution 
of tissues (16, 17), in immune cell sdection and immuno- 
logic response (18, 19), and in aging (20). It can also be in- 
duced in various experimental systems, such as thymocytes 
treated with glucocorticoids (21), resting lymphocytes fol- 
lowing low levels of 7-irradiation (22), targets o f t  cell killing 
(23, 24), tumor cells and thymocytes exposed to extraeel- 
lular ATP (8), as well as tumor cell lines treated with potas- 
sium ionophores and immature murine thymocytes treated 
with calcium ionophore (25, 26), growth factor-dependent 
cells upon removal of the growth factor (27, 28), tumor regres- 
sion induced with APO-1 antibody (29), and upregulation 
of the c-m F oncogeue in fibroblasts (30). 

DNA fragmentation is a precocious event in glucocorticoid- 
induced apoptosis in thymocytes, and it has been proposed 
that the DNA deavage may be due to activation ofa CaZ+/ 
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MgZ+-dependent endonuclease (9, 21, 31). A number of at- 
tempts have been made to isolate this endonudease. Prelimi- 
nary data suggested that the mediator responsible for the 
genomic digestion during apoptosis may be a DNase I-like 
endonuclease (32, 33). In most cases of apoptosis, DNA frag- 
mentation induced by endonudease cleavage has also been 
associated with chromatin condensation (6, 34). In fact, Arch& 
et al. (31) have proposed that both chromatin condensation 
and DNA fragmentation may be the direct result of nudease 
activation within the dying cells. However, other researchers 
(35, 36) have advanced evidence that chromatin condensa- 
tion may be triggered through endonuclease-independent 
pathways. 

Several cytosolic and membrane bound factors, including 
components of the signal transduction pathway, are thought 
to mediate the outside signals that trigger apoptosis (37). 
To simplify the analysis of the metabolic events taking place 
at the nuclear level, we used isolated nuclei to mimic the nu- 
clear changes associated with apoptosis. Specifically, we have 
used this simple in vitro system to address the question of 
whether endonuclease activation is in fact responsible for 
both DNA fragmentation and chromatin condensation. Our 
findings indicate that sdective activation of an endonudease 
is required for DNA fragmentation, but it is neither neces- 
sary nor sufficient to induce nuclear chromatin condensation. 
In addition, we demonstrate that DNA fragmentation and 
the morphological nuclear changes associated with apoptosis 
could be initiated within the dying cell by different mediators. 

Materials and Methods 

Cells and Materials. The murine tumor cen lines, P815 (mastocy- 
toma), Yac-1 (lymphoma), and EL4 (thymoma) were maintained 
as suspension cultures in aMEM (GIBCO BRL, Gaithersburg, MD) 
supplemented with 5% fetal bovine serum. Cens were harvested 
during log phase growth for isolation of nuclei. Livers were asepti- 
cally removed from Swiss mice (Charles tLiver Laboratories, Wil- 
mington, MA) and homogenized in a buffer containing 50 mM 
Tris-HC1, pH 7.5, 25 mM KC1, 5 mM MgClz, and 250 mM su- 
crose. Single cen suspensions were prepared by mincing the liver 
with the hub of a plastic syringe and passing the cells through 
a steel mesh into cxMEM. 

Isolation of Nuclei. Nuclei were isohted through the method 
described by Arends et al. (31), with minor mMifications. Cells 
were suspended in 20 ml isotonic lysis buffer containing 100 mM 
NaC1, 1.5 mM MgC12, 50 raM "fi'is-HC1, pH 7.4, supplemented 
with 0.15% NP-40 and 1 mM PMSE After incubation on ice for 
30 rain, the lysate was centrifuged at 200 g to pellet the nuclei. 
The nuclei were washed once with 150 mM NaCI, 50 mM Tris- 
HC1, pH 7.5, and resuspended in a final volume of 1 ml of the 
same buffer. 

Treatment of Isolated Nuclei with Different Agents. Nuclei were 
used at a concentration of 1-2 x 107/ml in 50 mM Tris-HC1, 150 
mM NaC1, pH 7.5. Treatment ofisohted nuclei with micrococcal 
nuclease was performed by the method of Arends et al. (31) with 
minor modifications. The nuclei were incubated with 0.25/zg/ml 
micrococcal nuclease at 37~ for varying times (Worthington Bio- 
chemical Corp., Freehold, NJ), or for 10 rain with micrococcal 
nudease at various concentrations, as described in results. For acti- 
vat/on of endogenous endonucleases, nuclei were incubated in 

CaC12 and MgCl2 at various concentrations for 3-4 h at 25~ or 
varying times in 1.2 mM CaCI2 and MgCI2, following the method 
of Cohen and Duke (9) with minor modifications. For inhibition 
of endogenous endonucleases, fiver nuclei were preincubated with 
100/tM or 150/~M ZnC12 for 1 h followed by incubation in 0.9 
mM or 1.2 mM CaCI2 and MgCl2 at 25~ for 3-4 h. ZnC12 con- 
centrations and the inhibition period were adopted from the method 
of Cohen and Duke (9). After treatment, nuclei were subjected 
to electron microscopy or used for the DNA assay. 

To establish the kinetics of DNA digestion, nuclei at a concen- 
tration of 2 x 10~/ml were incubated in 0.25/zg/ml micrococcal 
nuclease at 37~ The digestion was terminated between 1 and 
10 min by the addition of EDTA at a final concentration of 5 mM. 
Alternatively, nuclei were incubated for 10 min at 37~ with 1.2 
ng/ml-l.25/~g/ml micrococcal nuclease. Mouse liver nuclei were 
subjected to various concentrations of CaCI2 and MgCh between 
0.075 and 4.8 mM at 25~ for 3 h or to 1.2 mM CaCI2 and 
MgC12 at different time points between 0 and 5.5 h. 

Treatment of Mouse Liver Cells with Valinom,/dn. Mouse liver tissue 
was cut into very small pieces and incubated in o~MEM culture 
medium for 4 h at 37~ in the presence or absence of 100/~M 
valinomycin. After incubation, liver cells were fixed in 4% 
glutaraldehyde, 1% paraformaldehyde, 100 mM phosphate, pH 7.2, 
and prepared for electron microscopy. DNA was extracted from 
liver cells after incubation with 100/~M valinomycin for 4, 12, or 
24 h. 

DNA Fragmentation Assays. For DNA gels, 2 x 107 nuclei 
were lysed by overnight incubation at 37~ in 2x DNA extrac- 
tion buffer (20 mM 31"is-HC1, 20 mM EUE&, 300 mM Nat1, 1.0% 
SDS, 200 tzg/ml proteinase K, pH 8.0) with gentle rotation after 
treatment with micrococcal nuclease, CaCI2, MgClz, or ZnClv 
The DNA was extracted with phenol and chloroform three times. 
DNA was precipitated from the aqueous phase for 30 min on dry 
ice, after the addition of 0.1 vol of 3 M Naz acetate and 2.5 vol 
of 100% ethanol. The DNA was recovered by centrifugation at 
13,000 g for 30 mitt. The DNA pellet was resuspended in TE (10 
mM "fi'is, 1 mM EDTA) and digested with KNase A (50/~g/ml) 
at 37~ for 30 rain. The same amount of nucleic add from each 
sample (10-30/~g) was subjected to dectrophoresis on a 1.2% 
agarose gel containing ethidium bromide and visualized under 
ultraviolet light. 

For the kinetic studies of genomic digestion, at the end of the 
incubation period the nuclei were harvested by centrifugation at 
200 g for 10 rain. The supernatant was saved and the pellet was 
lysed by adding 0.5 ml TTE (10 mM 'Ii'is-HCl, pH 7.4, 1 mM 
EU~,  pH 8.0, and 0.2% Triton X-100) and vigorously vortexing 
at 25~ for 20 rain. Fragmented DNA was separated from intact 
chromatin by centrifugation at 13,000 g for 20 min at 4~ (21). 
The supematants were decanted and saved; the pellets were 
resuspended in 0.5 ml of the same solution. The DNA was precipi- 
tated with 25% TCA at 4~ overnight. Pellet and supernatant 
fractions were assayed for DNA content by the diphenyhmine reac- 
tion (38) and were quantified spectrophotometrically at 630 nm 
using a microphte reader (model MR. 700; Dynatech Laboratories 
Inc., Alexandria, V'zrginia). 

Electron Microscopy. Nuclei were fazed in situ by mixing with 
an equal volume of fixative (4 % glutaraldchy~ 1% paraformalde- 
hyde, and 100 raM phosphate, pH 7.2) at 4~ overnight. After 
two washes in 200 mM phosphate, the nuclear pellets were washed 
and dehydrated in 30, 50, 70, 95, and 100% ethanol, and 100% 
propylene oxide, two times each, for 5 rain. The samples were em- 
bedded in Epon at 37~ overnight and at 60~ for another 3 d. 
Ultrafine sections were cut on an ultramicrotome (model MTt00- 
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XL; Reichert Scientific Instruments, Buffalo, NY). The sections 
were contrasted with uranyl acetate and lead citrate for examina- 
tion on an electron microscope (model 100 EX; Jeol Ltd., Tokyo, 
Japan). 

l~esults 

Micrococcal Nuclease Induces DNA Fragmentation without Chro- 
matin Condensation in Isolated Nuclei. It has been shown pre- 
viously that the DNA hddering pattern induced during apop- 
tosis by endonuclease activation can be mimicked by the 
addition of micrococcal nuclease to isolated thymocyte nuclei 
(31). We isolated nuclei from the cell lines EL4, P815, Yac-1, 
and mouse liver ceils to reproduce this pattern of micrococcal 
nuclease-induced DNA fragmentation. These nuclei are ideal 
for studies on chromatin condensation, since they exhibit ho- 
mogeneous chromatin structure consisting largely of en- 
chromatin. This experiment was designed to determine 
whether digestion of genomic DNA is sufficient or even neces- 
sary for chromatin condensation to occur. Nuclei were sub- 
jeered to digestion with 0.25/~g/ml micrococcal nuclease at 
37~ between 1 and 10 min or digested at varying concen- 
trations between 1.2 ng/ml and 1.25/zg/rnl for 10 rain. After 
digestion with 0.25 ~tg/ml micrococcal nudease for 5 or 10 
rain, a DNA ladder pattern, similar to that described for apop- 
tosis, was observed (Fig. 1). In contrast, untreated nuclei re- 
tained the intact high molecular weight DNA. Morphologi- 
cally, in nuclei treated with 0.25 ttg/ml micrococcal nudease 
at different time points between 1 and 10 min, no chromatin 
condensation was observed, although the nuclei appeared pro- 
gressivdy bare with increasing digestion times, presumably 
due to loss of DNA by digestion (Fig. 2, b-c). After diges- 
tion with micrococcal nudease, a thin layer of undigested 
heterochromatin, not corresponding to chromatin conden- 
sation, appeared around the periphery of the nuclei in P815 
(Hg. 2, e-f), Yac-1, and EL4 nuclei (data not shown). As 

Figure 1. DNA fragmentation in isohted nuclei due to micrococcal 
nuclease treatment. (Lane I) 1-kb DNA ladder marker from GIBCO BILL, 
containlng the following fragments: 12,216, 5,090, 4,072, 3,054, 2,036, 
1,636, 1,018, 506, 396, and 344 bp each. (Lane 2) Mouse fiver nuclei in- 
cubated with 50 mM Tris-HCl, pH 7.5, for 10 min. (].ane 3) Mouse liver 
nuclei incubated with 125 mM KCI, 2 mM K ~ 4 ,  25 mM Hepes and 
4 mM MgC12, pH 7.0, for 10 mill. (Lane 4) Mouse liver nuclei treated 
with 0.25 ttg/ml mictoceccal nudease for 10 min. (Ianes 5, 8, and 11) 
Contain DNA from untreated EL4, P815, and Yac-1 nuclei, respectively. 
DNA fragmentation was observed after treatment with 0.25/~g/rnl mi- 
crecoccal nudease for 5 and 10 rain in EL4 nuclei (lanes 6 and 7, respec- 
tively), P815 nuclei (lanes 9 and I0), and Yac-1 nuclei (lanes 12 and I3). 
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expected, the chromatin in untreated nuclei was found to be 
homogeneously distributed and showed no condensation (Fig. 
2, a and d). 

The effects of different concentrations of micrococcal 
nuclease and different digestion times on DNA degradation 
were next assessed, in order to determine if there is a corre- 
lation between the nuclear morphology and DNA fragmenta- 
tion under a range of ~ n t  conditions. DNA fragmentation 
in nuclei treated with 0.25/zg/ml micrococcal nuclease could 
be observed within 10 min (Fig. 3 a), which resulted in about 
three quarters of the DNA in P815, Yac-1 and mouse liver 
nuclei being fragmented. DNA fragmentation induced by 
micrococcal nudease during a 10-min digestion was also dose 
dependent, as shown by the diphenylamine reaction (Hg. 
3 b). Addition of 1.25/zg/ml micrococcal nudease for 10 min 
induced 90% DNA fragmentation in P815, 87% in Yac-1, 
and 79% in mouse liver nuclei. Again, there was no chro- 
matin condensation with any concentration of micrococcal 
nudease used (data not shown). In these experiments, the 
spontaneous DNA fragmentation measured by the diphenyl- 
amine reaction was <17% after a 15-min incubation in the 
absence of nudease; this level may be due to mechanical damage 
incurred by the nuclei during the isolation procedure. How- 
ever, the nuclei with spontaneously fragmented DNA dis- 
played no chromatin condensation. 

The fact that DNA fragmentation could be induced in the 
absence of chromatin condensation at different time points 
and concentrations in all four types of nuclei indicates that 
the nuclear changes induced by micrococcal nuclease are not 
limited to a single cell type. 

CaCI2 and MgCh Induce both DNA Fragmentation and 
Chrornatin Condensation in Isolated Mouse Liter Nuclei. In 
thymocytes, rat liver cells, and spleen cells, it has been shown 
that there is a Ca 2+/Mg2+-dependent endonudease that 
may cause DNA fragmentation (9, 39). To compare the nu- 
clear changes induced by micrococcal nudease with those 
resulting from activation of an endogenous Ca2+/Mg 2+- 
dependent nuclease, isolated nuclei from EL4, Yac-1, P815, 
and mouse liver cells were incubated in the presence of 
Ca2+/Mg 2+. DNA laddering was only detected in treated 
mouse liver nuclei, suggesting that only mouse liver nuclei 
among the nuclei tested contain an endonudease whose ac- 
tivity can be directly activated by Ca 2+/Mg2+; thus only 
these liver nuclei were used in the subsequent experiments. 
Incubation with 0.9 mM CaC12 and MgC12 at 25~ for 1.5 
or 3 h resulted in a typical DNA ladder pattern, whereas 
untreated nuclei retained an intact high molecular weight 
DNA band upon dectrophoresis through a 1.2% agarose gd 
(Fig. 4). Furthermore, the internucleosomal DNA fragmen- 
tation triggered by CaC12 and MgCh was both dose and 
time dependent. Addition of 4.8 mM CaC12 and MgC12 in- 
duced 82% DNA fragmentation after a 3-h incubation (Fig. 
5 a). After 5.5 h, 1.2 mM CaClz and MgC12 induced 77% 
DNA fragmentation (Fig. 5 b). 

The nuclear morphology was next monitored by electron 
microscopy. In contrast to the results obtained using micro- 
coccal nudease digestion, the nuclei treated with 0.9 mM 
CaC12 and MgC12 for 3 h had a typical pattern of chromatin 
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Figure 2. Nuclear changes in isohted nuclei induced by micrococcal nuclease. (a) Untreated mouse liver nuclei contain homogeneous nuclei matrix 
and euchromatin. On the periphery, there is a thin layer of condensed heterochromatin. (b) Mouse liver nuclei incubated with 0.25/~g/ml micrococcal 
nuclease for 5 win; (c) after a 10-min incubation, the nuclei become flocculent. There is no chromatin condensation after microcuccal nuclease digestion 
for either 5 or 10 min (b and c). (d) Untreated P815 nuclei contain nuclei with a homogeneous appearance. (e) There is considerable thinning of the 
P815 nuclei after they are digested with 0.25/~g/ml micrococcal nuclease for (e) 5 or (t) 10 min. Bar, 2 #m. 

condensation (Fig. 6 b). A more striking level of chromatin 
condensation was found after treatment with 1.2 mM CaCI2 
and MgClz for the same period of time (Fig. 6 c). 

ZnCh Inhibits the DNA Fragmentation Induced by CaCh 
and MgCI2, but Is Unable to Block the Chromatin Condensation 
in Mouse Liver Nuclei. Since ZnClz has been shown to in- 

hibit endogenous endonucleases in several systems (9), it is 
possible to establish whether endonucleases are necessary for 
both the DNA fragmentation and chromatin condensation 
caused by Ca z +/Mg 2 + or only for the DNA fragmentation. 
Thus, mouse liver nuclei were incubated with 100 or 150 
izM ZnC12 at 37~ for 30 rain and subsequently treated 
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Figure 3. Kinetics and concentration dependence of DNA digestion 
by micrococcal nudease in isolated nuclei, as measured by the DNA frag- 
mentation assay. (a) Time dependence of DNA digestion. The DNA frag- 
mentation in P815 and Yac-1 nuclei and mouse liver nuclei incubated with 
0.25/~g/ml microcuccal nuclease increased monotonically for 10 min, be- 
fore reaching a plateau. (b) Dose dependence of DNA digestion induced 
by microcuccal nuclease at concentrations between 1.2 ng/ml and 1.25 
#g/ml for 10 min. After a 15-min incubation in the absence of nudease, 
there was 15% spontaneous DNA fragmentation in mouse liver nuclei, 
17% in P815 nuclei, and 14% in Yac-1 nuclei. The DNA fragmentation 
assays (described in Materials and Methods) were repeated at least twice 
and the variations were within +5%. 

Figure 4. Electrophoresis of DNA isolated 
from mouse liver nuclei treated with CaCh, 
MgClz, and ZnClz. (Lane I) 1-kb DNA 
marker from GIBCO BILL; (lane 2) untreated 
nuclei; (lane 3) nuclei treated with 1.2 mM 
CaCh and MgC12 for 1.5 h; (lane 4) nuclei 
treated with the same concentration of 
CaZ*/Mg a* for 3 h; (hne 5) nuclei pretreated 
with 100 /~M ZnClz for 1 h, followed by 
1.2 mM CaClz and MgClz for 3 h; (lane 6) 
150 #M ZnClz was used for pretreatment. 
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Dose and time dependence of DNA digestion induced by 
Ca2+/Mg z+ in mouse liver nuclei, as measured by the DNA fragmenta- 
tion assay. (a) Dose dependence of the effect of Ca2*/Mg 2+ on DNA 
fragmentation in mouse liver nuclei after a 3-h incubation. (b) DNA frag- 
mentation induced by 1.2 mM CaC12 and MsCIz at different time points 
between 0 and 5.5 h ( i ) .  (V'I) DNA fragmentation in the absence of 
Ca 2+/Mg z+ . The DNA fragmentation assays (described in Materials and 
Methods) were repeated at least twice and the variations were within _+5%. 

wi th  0.9 mM CaCI2 and MgCI2 for 3 h. The D N A  frag- 
mentation induced by CaC12 and MgC12 was completely in- 
hibited by 100 #M ZnC12 (Fig. 4), but a typical pattern of 
chromatin condensation was still observed (Fig. 6 d). This 
suggests that these two  processes could be triggered indepen- 
dently during apoptosis. 

Valinomycin Induces Chroraatin Condensation but not DNA 
Fragmentation in Intact Mouse Liver Cells. To further test the 
possibility that endonudease activation may not suttee to 
induce chromatin condensation, we sought an example where 
chromatin condensation could be induced without D N A  frag- 
mentation in intact cells. In has previously been reported that 
valinomycin, a potassium ionophore, can induce traits char- 
acteristic of apoptosis in several cell lines (25, 40, 41). In agree- 
ment with these results, we observed that 1 0 0 / ~  valinomycin 
triggers DNA fragmentation in EL4, P815, and Yac-1 cells 
(data not shown). However, when mouse liver cells were ex- 
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posed to the same concentration of valinomycin for periods 
between 4 and 24 h at 37~ there was no DNA laddering 
observed at any time point (Fig. 7). Nonethdess, electron 
microscopy revealed typical chromatin condensation in the 

Figure 6. Nuclear changes in mouse fiver nuclei 
resulting from treatment with Ca 2+/Mg 2* and 
ZnClz. Bar, 2/~m. (a) Untreated nuclei. (b) Chro- 
matin condensation is observed in isolated mouse 
liver nuclei treated with 0.9 mM CaCI2 and 
MgCI2 for 3 h. (c) Stronger chromatin condensa- 
tion appears after treatment with 1.2 mM CaClz 
for 3 h. (d) Chromatin condensation is still present 
when nuclei are preincubated with 100/~M ZnCI2 
before incubation with 0.9 mM CaClz and MgC12 
for 3 h. 

nuclei (Fig. 8, b and c) with cytoplasmic blebbing after a 4-h 
incubation with valinomycin. The cytoplasmic changes are 
likely due to secondary necrosis induced by valinomydn tox- 
icity, which has been previously observed by our group (25). 
In contrast, liver cells incubated under the same conditions 
but in the absence of valinomycin demonstrated a normal nu- 
clear morphology with intact cytosolic organdies (Fig. 8 a). 

Figure 7. Absence of DNA fragmentation 
in mouse liver cells upon treatment with 
valinomycin. (Lane I) 1-kb DNA marker from 
GBCO BILL; (lane 2) untreated nuclei; (lanes 
3-~ nuclei treated with 100/~ valinomycin 
for 4, 12, and 24 h, respectively. 

Discussion 

Although the morphological characteristics of apoptosis 
have been described in detail, little is known about the cel- 
lular machinery underlying this process In addition, although 
chrornatin condensation and internucleosomal DNA laddering 
are two salient features of apoptotic cell death (21, 42), whether 
they are triggered by the same pathway or represent two in- 
dependent events remains controversial (31, 35, 36). 
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Figure 8. Apoptotic changes in mouse liver cells due 
to valinomycin tmatmem. (a) Normal morphology of cells 
after a 4-h incubation without vallnomycin. (b andc) Chro- 
matin condensation in mouse liver nuclei and bebbling 
in cytoplasm induced by 100 #M valinomyvin after a 4-h 
incubation. Bar, 2/Lm. 

In 1980, WyUie (21) observed that the morphological ap- 
pearance of apoptosis in glucocorticoid-treated thymocytes 
was accompanied by DNA breakdown into integral mukiples 
of about 180 bp. This led him to propose that steroids may 
induce an endonuclease with specificity much like that of mi- 
crococcal endonuclease, which cuts chromatin DNA in the 
linker regions between nucleosomes. More recently, Arends 
et al. (31) showed that micrococcal nuclease can induce both 
DNA fragmentation and chromatin condensation in isolated 
rat tbymocyte nuclei. They concluded that selective activa- 
tion of an endogenous endonuclease during apoptosis could 
be responsible not only for widespread chromatin cleavage 
but also for the major nuclear morphological changes. 

To evaluate the nuclear changes that may be induced by 
micrococcal nuclease in a wider range of cell types, we used 
mouse liver nuclei and nuclei isolated from several tumor cell 
lines as model systems. This system is particularly useful as 
it bypasses the signal transduction pathways normally required 
to induce death in whole cells in response to extracellular 
signals. Furthermore, it has been proposed that protein syn- 
thesis may be required in some cases for apoptosis to occur 
(10, 43, 44). The use of isolated nuclei avoids these compli- 
cations, as conditions in the nucleus can be directly manipu- 
lated and the effects upon DNA fragmentation and chromatin 
condensation ascertained. 
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In this study, no chromatin condensation was observed 
in the nuclei from any of the four cells tested after the nuclei 
were incubated with micrococcal nuclease at different con- 
centrations or different time periods. These data show that 
digestion of genomic DNA into intemudeosomal fragments 
alone does not cause concomitant collapse of chromatin struc- 
ture, leading to chromatin condensation. For comparison, 
we attempted to test mouse thymocyte nuclei, but even in 
the normal thymocyte nucleus there were large amounts of 
condensed heterochromatin, making it difficult to identify 
specific chromatin condensation in treated nuclei. It is pos- 
sible that previous observations of chromatin condensation 
in isolated thymocyte nuclei after treatment with micrococcal 
nuclease (31) may be due to erroneous identification of het- 
erochromatin as chromatin condensation. 

Several groups have shown that a Ca z +/Mg ~ +-dependent 
endonudease exists in rat liver nuclei (39, 45) and mouse 
thymocyte nuclei (9). Recently, Ucker et al. (32) and Peitsch 
et al. (33) have independently reported that a DNase I-like 
endonudease is involved in nuclear DNA fragmentation during 
apoptosis. Wc attempted to activate this endonudease by 
altering the concentrations of Ca2+/Mg z+ in the media. 
However, unlike micrococcal nuclease treatment, CaZ+/ 
Mg z + triggered not only DNA fragmentation but also in- 
duced chromatin condensation (Fig. 6). Given our observa- 
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tion that micrococcal nuclease treatment alone does not cause 
chromatin condensation, it is possible that the effects of 
Ca 2+/Mg 2+ may be due to the activation of other enzymes 
besides endonucleases, which may alter the structure of chro- 
matin, resulting in its condensation. 

In these experiments, miilimolar concentrations of Ca 2+ / 
Mg 2 + have been used, whereas the cytosolic Ca 2 + concentra- 
tions in thymocytes undergoing apoptosis have been found 
to be in the range of 400-700 nM (39). It would be useful 
to know which cdlular factors contribute to the enhanced 
sensitivity of nuclei to submicromolar Ca 2+ in intact cells. 
Alternatively, the calcium concentrations reported for apop- 
totic thymocytes may simply represent average cellular con- 
centrations, which does not exclude the possibility that local- 
ized calcium gradients, with higher concentrations in the 
nucleus, may exist within the cell. 

Cohen and Duke (9) have reported that glucocorticoid- 
mediated apoptosis in thymocytes may involve glucocorti- 
coid activation of a calcium-dependent endonudease, and they 
have shown that apoptosis could be prevented by the use of 
zinc, an endonudease inhibitor. Likewise, zinc inhibited ceil 
death in P815 tumor ceils incubated with valinomycin (25). 
More recently, Cohen et al. (35) dissociated chromatin con- 
densation from internudeosomal DNA fragmentation by 
treating intact thymocytes undergoing glucocorticoid-induced 
apoptosis with ZnC12. However as ZnC12 is known to be a 
nonspecific inhibitor of protein and ILNA synthesis, and is 
a blocker of Ca 2 + influx as well as an endonudease inhib- 
itor (9, 46, 47), it was not dear whether this was a direct 
effect upon endonudeases or involved nonspecific inhibition 
of cytosolic protein synthesis or Ca 2+ influx. Our analysis 
of the effects of ZnC12 circumvents these problems through 
the use of isolated mouse liver nuclei, which lack the cyto- 
solic targets for ZnC12 action, and suggests that ZnCh does 
in fact directly inhibit endonudeases in isolated mouse liver 
nuclei (Fig. 4). Based on our observation that ZnCh only 
inhibits DNA fragmentation without blocking the chromatin 

condensation induced by Ca 2 +/Mg 2 +, we conclude that en- 
donudease activation causes DNA fragmentation but is not 
necessarily responsible for chromatin condensation. 

Valinomycin has been shown to induce apoptosis and in- 
creases in cytosolic Ca 2+ levels in several tumor cell lines 
(25). However in mouse liver ceils, treated with valinomycin, 
we observed an unusual form of cell death, morphologically 
similar to apoptosis but consisting of a mixture of nuclear 
apoptotic changes (chromatin condensation) and cytoplasmic 
necrotic changes. However, no DNA fragmentation was 
observed even up to 24 h. Other recent reports have also 
demonstrated the induction of apoptosis without DNA frag- 
mentation in rat hepatocytes by okadaic acid (an inhibitor 
of phosphoprotein phosphatase 1 and 2A) and TGF-B1 (48, 
49). This finding further supports the hypothesis that chro- 
matin condensation may occur without activation of en- 
donudeases during apoptosis. 

In summary, we challenged isolated nuclei with micro- 
coccal nudease to mimic the genomic digestion due to en- 
donudease activation during apoptosis. We observed that mi- 
crococcal nudease induced a DNA ladder pattern but no 
chromatin condensation. Using Ca 2 +/Mg 2 + to activate the 
Ca z +/Mg 2 +-dependent endonudease in isolated liver nudei, 
we were able to set off both DNA fragmentation and chro- 
matin condensation. Nonetheless, the chromatin condensa- 
tion was not due to endonudease activity, since ZnC12 in- 
hibited DNA fragmentation but failed to block the chromatin 
condensation induced by Ca z §  + . Similar results were 
obtained with whole liver cells, where we could trigger 
apoptotic-type morphological changes without DNA frag- 
mentation after incubating the cells with valinomycin. Taken 
together, our results suggest that endonudease activation is 
neither necessary nor su~icient to induce chromatin conden- 
sation in apoptosis, and they raise the possibility that DNA 
fxagmentation and the nuclear structural changes may be caused 
by separate mediators in cells undergoing apoptosis. 
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