9 research outputs found

    The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers

    Get PDF
    Cattle imported from the Iberian Peninsula spread throughout America in the early years of discovery and colonization to originate Creole breeds, which adapted to a wide diversity of environments and later received influences from other origins, including zebu cattle in more recent years. We analyzed uniparental genetic markers and autosomal microsatellites in DNA samples from 114 cattle breeds distributed worldwide, including 40 Creole breeds representing the whole American continent, and samples from the Iberian Peninsula, British islands, Continental Europe, Africa and American zebu. We show that Creole breeds differ considerably from each other, and most have their own identity or group with others from neighboring regions. Results with mtDNA indicate that T1c-lineages are rare in Iberia but common in Africa and are well represented in Creoles from Brazil and Colombia, lending support to a direct African influence on Creoles. This is reinforced by the sharing of a unique Y-haplotype between cattle from Mozambique and Creoles from Argentina. Autosomal microsatellites indicate that Creoles occupy an intermediate position between African and European breeds, and some Creoles show a clear Iberian signature. Our results confirm the mixed ancestry of American Creole cattle and the role that African cattle have played in their development

    Diagnostic accuracy of the BioFire® FilmArray® pneumonia panel in COVID-19 patients with ventilator-associated pneumonia

    No full text
    Abstract Background Ventilator-Associated pneumonia (VAP) is one of the leading causes of morbidity and mortality in critically ill COVID-19 patients in lower-and-middle-income settings, where timely access to emergency care and accurate diagnostic testing is not widely available. Therefore, rapid microbiological diagnosis is essential to improve effective therapy delivery to affected individuals, preventing adverse outcomes and reducing antimicrobial resistance. Methods We conducted a cross-sectional study of patients with suspected VAP and COVID-19, evaluating the diagnostic performance of the BioFire® FilmArray® Pneumonia Panel (FA-PP). Respiratory secretion samples underwent standard microbiological culture and FA-PP assays, and the results were compared. Results We included 252 samples. The traditional culture method detected 141 microorganisms, and FA-PP detected 277, resulting in a sensitivity of 95% and specificity of 60%, with a positive predictive value of 68% and negative predictive value of 93%. In samples with high levels of genetic material (> 10^5 copies/mL), the panel had a sensitivity of 94% and specificity of 86%. In addition, 40% of the culture-negative samples had positive FA-PP® results, of which 35% had > 10^5 copies/mL of genetic material. The most prevalent bacteria were Gram-negative bacilli, followed by Gram-positive cocci. The panel identified 98 genes associated with antimicrobial resistance, predominantly extended-spectrum beta-lactamases (28%). Conclusion The FA-PP is a sensitive assay for identifying bacteria causing VAP in patients with COVID-19, with a greater capacity to detect bacteria than the conventional method. The timely microbiological recognition offered by this panel could lead to optimized decision-making processes, earlier tailored treatment initiation, and improved antibiotic stewardship practices

    MEGARA, the R=6000-20000 IFU and MOS of GTC

    Get PDF
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec 2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin 2 . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated. © 2018 SPIE

    Author Correction: The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers (Scientific Reports, (2019), 9, 1, (11486), 10.1038/s41598-019-47636-0)

    No full text
    Correction to: Scientific Reports https ://doi.org/10.1038/s4159 8-019-47636 -0, published online 07 August 2019 This Article contains errors. The Acknowledgements section in this Article is incomplete, the funding source LISBOA-01-0145-FEDER-016647 is omitted, “This work was supported by Animal Breeding Consulting S.L., Córdoba, Spain. This work was partially funded by the Veterinary Genetics Laboratory, University of California, Davis, VELOGEN S.L., Madrid, Spain and by Grupo de Referencia A19-17R LAGENBIO from Gobierno de Aragon/Fondo Social Europeo. C.G. was supported by Fundação Nacional para a Ciência e a Tecnologia (FCT), Portugal, Investigador FCT Grant IF/00, 866/2014, and Project grant PTDC/CVTLIV/2827/2014 co-funded by COMPETE 2020 POCI-01-0145-FEDER-016647. The authors thank the collaboration of breeders, breed associations and “Red Iberoamericana Sobre la Conservacion de la Biodiversidad de Animales Domesticos Locales para el Desarollo Rural Sostenible (Red CONBIAND)” for the sharing of biological samples. Members of the CYTED XII-H and CONBIAND networks are thanked for valuable cooperation over the years. Authors thank Juan Antonio Pereira (FCV-UAGRM, Bolivia) and Olivier Hanotte for their support with sampling Criollo Yacumeño and Eastern Shorthorn Zebu respectively.” should read: “This work was supported by Animal Breeding Consulting S.L., Córdoba, Spain. This work was partially funded by the Veterinary Genetics Laboratory, University of California, Davis, VELOGEN S.L., Madrid, Spain and by Grupo de Referencia A19-17R LAGENBIO from Gobierno de Aragon/Fondo Social Europeo. C.G. was supported by Fundação Nacional para a Ciência e a Tecnologia (FCT), Portugal, Investigador FCT Grant IF/00, 866/2014, Project grant PTDC/CVTLIV/2827/2014 co-funded by COMPETE 2020 POCI-01-0145-FEDER-016647 and LISBOA-01-0145-FEDER-016647. The authors thank the collaboration of breeders, breed associations and “Red Iberoamericana Sobre la Conservacion de la Biodiversidad de Animales Domesticos Locales para el Desarollo Rural Sostenible (Red CONBIAND)” for the sharing of biological samples. Members of the CYTED XII-H and CONBIAND networks are thanked for valuable cooperation over the years. Authors thank Juan Antonio Pereira (FCV-UAGRM, Bolivia) and Olivier Hanotte for their support with sampling Criollo Yacumeño and Eastern Shorthorn Zebu, respectively.” In addition, a Data Availability section is not included in the article – it should appear as below: “Data availability STR data used in our analysis is available in the Dryad repository: https :; doi.org/10.5061/dryad .5dv41 ns43”

    Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the Availability and Pressure-Temperature Stability of Phytochemicals

    No full text

    esults from a prospective observational study of men with premature ejaculation treated with dapoxetine or alternative care: the PAUSE study.

    No full text
    corecore