475 research outputs found

    Phonons from neutron powder diffraction

    Full text link
    The spherically averaged structure function \soq obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of \soq to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e. it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure (dynamics from powder diffraction(DPD)) has been successfully implemented for two systems, a simple metal, fcc Ni, and an ionic crystal, CaF2_{2}. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from powder neutron diffraction

    Ferro-lattice-distortions and charge fluctuations in superconducting LaO1x_{1-x}Fx_{x}BiS2_{2}

    Full text link
    Competing ferroelectric and charge density wave phases have been proposed to be present in the electron-phonon coupled LaO1x_{1-x}Fx_{x}BiS2_{2} superconductor. The lattice instability arises from unstable phonon modes that can break the crystal symmetry. Upon examination of the crystal structure using single crystal diffraction, we find a superlattice pattern arising from coherent in-plane displacements of the sulfur atoms in the BiS2_{2} superconducting planes. The distortions morph into coordinated ferro-distortive patterns, challenging previous symmetry suggestions including the possible presence of unstable antiferro-distortive patterns. The ferro-distortive pattern remains in the superconducting state, but with the displacements diminished in magnitude. Moreover, the sulfur displacements can exist in several polytypes stacked along the c-axis. Charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing

    Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H2H-TaS2_2

    Get PDF
    We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study on 2H2H-TaS2_2, a canonical incommensurate Charge Density Wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2H2H-TaSe2_2 and 2H2H-NbSe2_2, the energy gap (Δcdw\Delta_{\text{cdw}}\,) of 2H2H-TaS2_2 is localized along the K-centered Fermi surface barrels and is particle-hole asymmetric. The persistence of Δcdw\Delta_{\text{cdw}}\, even at temperatures higher than the CDW transition temperature Tcdw\it{T}_{\text{cdw}}\, in 2H2H-TaS2_2, reflects the similar pseudogap (PG) behavior observed previously in 2H2H-TaSe2_2 and 2H2H-NbSe2_2. However, in sharp contrast to 2H2H-NbSe2_2, where Δcdw\Delta_{\text{cdw}}\, is non-zero only in the vicinity of a few "hot spots" on the inner K-centered Fermi surface barrels, Δcdw\Delta_{\text{cdw}}\, in 2H2H-TaS2_2 is non-zero along the entirety of both K-centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of Δcdw\Delta_{\text{cdw}}\, between otherwise similar CDW compounds to the different orbital orientations of their electronic states that are involved in CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.Comment: 6 pages, 4 figure

    Storage Device Sizing for a Hybrid Railway Traction System by Means of Bicausal Bond Graphs

    Get PDF
    In this paper, the application of bicausal bond graphs for system design in electrical engineering is emphasized. In particular, it is shown how this approach is very useful for model inversion and parameter dimensioning. To illustrate these issues, a hybrid railway traction device is considered as a case study. The synthesis of a storage device (a supercapacitor) included in this system is then discussed

    Nano-magnetic droplets and implications to orbital ordering in La1-xSrxCoO3

    Get PDF
    Inelastic cold neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic (AFM) correlations that are dynamic follow the activation to the excited state, identified as the intermediate S=1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.Comment: To appear in Phys. Rev. Let

    Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+y_{1+y}Sex_xTe1x_{1-x}

    Get PDF
    Using bulk magnetization along with elastic and inelastic neutron scattering techniques, we have investigated the phase diagram of Fe1+y_{1+y}Sex_{x}Te1x_{1-x} and the nature of magnetic correlations in three nonsuperconducting samples of Fe1.01_{1.01}Se0.1_{0.1}Te0.9_{0.9}, Fe1.01_{1.01}Se0.15_{0.15}Te0.85_{0.85} and Fe1.02_{1.02}Se0.3_{0.3}Te0.7_{0.7}. A cusp and hysteresis in the temperature dependence of the magnetization for the x=0.15x=0.15 and 0.3 samples indicates spin-glass (SG) ordering below Tsg=23T_{\rm sg} = 23K. Neutron scattering measurements indicate that the spin-glass behavior is associated with short-range spin density wave (SDW) ordering characterized by a static component and a low-energy dynamic component with a characteristic incommensurate wave vector of Qm=(0.46,0,0.50){\bf Q}_m = (0.46, 0, 0.50) and an anisotropy gap of \sim 2.5 meV. Our high Q{\bf Q}-resolution data also show that the systems undergo a glassy structural distortion that coincides with the short-range SDW order

    Orbital and spin chains in ZnV2O4

    Full text link
    Our powder inelastic neutron scattering data indicate that \zvo is a system of spin chains that are three dimensionally tangled in the cubic phase above 50 K due to randomly occupied t2gt_{2g} orbitals of V3+^{3+} (3d23d^2) ions. Below 50 K in the tetragonal phase, the chains become straight due to antiferro-orbital ordering. This is evidenced by the characteristic wave vector dependence of the magnetic structure factor that changes from symmetric to asymmetric at the cubic-to-tetragonal transition

    Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction

    Full text link
    High real-space-resolution atomic pair distribution functions of La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO_6 octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95 and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and T=20K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
    corecore