475 research outputs found
Phonons from neutron powder diffraction
The spherically averaged structure function \soq obtained from pulsed
neutron powder diffraction contains both elastic and inelastic scattering via
an integral over energy. The Fourier transformation of \soq to real space, as
is done in the pair density function (PDF) analysis, regularizes the data, i.e.
it accentuates the diffuse scattering. We present a technique which enables the
extraction of off-center phonon information from powder diffraction experiments
by comparing the experimental PDF with theoretical calculations based on
standard interatomic potentials and the crystal symmetry. This procedure
(dynamics from powder diffraction(DPD)) has been successfully implemented for
two systems, a simple metal, fcc Ni, and an ionic crystal, CaF. Although
computationally intensive, this data analysis allows for a phonon based
modeling of the PDF, and additionally provides off-center phonon information
from powder neutron diffraction
Ferro-lattice-distortions and charge fluctuations in superconducting LaOFBiS
Competing ferroelectric and charge density wave phases have been proposed to
be present in the electron-phonon coupled LaOFBiS
superconductor. The lattice instability arises from unstable phonon modes that
can break the crystal symmetry. Upon examination of the crystal structure using
single crystal diffraction, we find a superlattice pattern arising from
coherent in-plane displacements of the sulfur atoms in the BiS
superconducting planes. The distortions morph into coordinated ferro-distortive
patterns, challenging previous symmetry suggestions including the possible
presence of unstable antiferro-distortive patterns. The ferro-distortive
pattern remains in the superconducting state, but with the displacements
diminished in magnitude. Moreover, the sulfur displacements can exist in
several polytypes stacked along the c-axis. Charge carriers can get trapped in
the lattice deformations reducing the effective number of carriers available
for pairing
Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of -TaS
We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study
on -TaS, a canonical incommensurate Charge Density Wave (CDW) system.
This study demonstrates that just as in related incommensurate CDW systems,
-TaSe and -NbSe, the energy gap () of
-TaS is localized along the K-centered Fermi surface barrels and is
particle-hole asymmetric. The persistence of even at
temperatures higher than the CDW transition temperature
in -TaS, reflects the similar pseudogap (PG) behavior observed
previously in -TaSe and -NbSe. However, in sharp contrast to
-NbSe, where is non-zero only in the vicinity
of a few "hot spots" on the inner K-centered Fermi surface barrels,
in -TaS is non-zero along the entirety of both
K-centered Fermi surface barrels. Based on a tight-binding model, we attribute
this dichotomy in the momentum dependence and the Fermi surface specificity of
between otherwise similar CDW compounds to the
different orbital orientations of their electronic states that are involved in
CDW pairing. Our results suggest that the orbital selectivity plays a critical
role in the description of incommensurate CDW materials.Comment: 6 pages, 4 figure
Storage Device Sizing for a Hybrid Railway Traction System by Means of Bicausal Bond Graphs
In this paper, the application of bicausal bond graphs for system design in electrical engineering is emphasized. In particular, it is shown how this approach is very useful for model inversion and parameter dimensioning. To illustrate these issues, a hybrid railway traction device is considered as a case study. The synthesis of a storage device (a supercapacitor) included in this system is then discussed
Nano-magnetic droplets and implications to orbital ordering in La1-xSrxCoO3
Inelastic cold neutron scattering on LaCoO3 provided evidence for a distinct
low energy excitation at 0.6 meV coincident with the thermally induced magnetic
transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic
(AFM) correlations that are dynamic follow the activation to the excited state,
identified as the intermediate S=1 spin triplet. This is indicative of
dynamical orbital ordering favoring the observed magnetic interactions. With
hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become
static and isotropically distributed due to the formation of FM droplets. The
correlation length and condensation temperature of these droplets increase
rapidly with metallicity due to the double exchange mechanism.Comment: To appear in Phys. Rev. Let
Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in FeSeTe
Using bulk magnetization along with elastic and inelastic neutron scattering
techniques, we have investigated the phase diagram of
FeSeTe and the nature of magnetic correlations in three
nonsuperconducting samples of FeSeTe,
FeSeTe and FeSeTe. A cusp
and hysteresis in the temperature dependence of the magnetization for the
and 0.3 samples indicates spin-glass (SG) ordering below K. Neutron scattering measurements indicate that the spin-glass behavior is
associated with short-range spin density wave (SDW) ordering characterized by a
static component and a low-energy dynamic component with a characteristic
incommensurate wave vector of and an anisotropy
gap of 2.5 meV. Our high -resolution data also show that the
systems undergo a glassy structural distortion that coincides with the
short-range SDW order
Orbital and spin chains in ZnV2O4
Our powder inelastic neutron scattering data indicate that \zvo is a system
of spin chains that are three dimensionally tangled in the cubic phase above 50
K due to randomly occupied orbitals of V () ions. Below
50 K in the tetragonal phase, the chains become straight due to
antiferro-orbital ordering. This is evidenced by the characteristic wave vector
dependence of the magnetic structure factor that changes from symmetric to
asymmetric at the cubic-to-tetragonal transition
Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction
High real-space-resolution atomic pair distribution functions of
La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using
high-energy x-ray powder diffraction to study the size and shape of the MnO_6
octahedron as a function of temperature and doping. In the paramagnetic
insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95
and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long
bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and
T=20K, we find a single Mn-O bond-length; however, as the metal-insulator
transition is approached either by increasing T or decreasing x, intensity
progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the
appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong
evidence that charge localized and delocalized phases coexist close to the
metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
- …
