3,697 research outputs found

    Charge-transfer photodissociation of adsorbed molecules via electron image states

    Full text link
    The 248nm and 193nm photodissociation of submonolayer quantities of CH3_3Br and CH3_3I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from sub-vacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-- translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane--vacuum interface, and then the charge transfers from this image state to the affinity level of a co-adsorbed halomethane which then dissociates.Comment: submitted to Journal of Chemical Physic

    Cation mono- and co-doped anatase TiO2_2 nanotubes: An {\em ab initio} investigation of electronic and optical properties

    Get PDF
    The structural, electronic, and optical properties of metal (Si, Ge, Sn, and Pb) mono- and co-doped anatase TiO2_{2} nanotubes are investigated, in order to elucidate their potential for photocatalytic applications. It is found that Si doped TiO2_{2} nanotubes are more stable than those doped with Ge, Sn, or Pb. All dopants lower the band gap, except the (Ge, Sn) co-doped structure, the decrease depending on the concentration and the type of dopant. Correspondingly, a redshift in the optical properties for all kinds of dopings is obtained. Even though a Pb mono- and co-doped TiO2_{2} nanotube has the lowest band gap, these systems are not suitable for water splitting, due to the location of the conduction band edges, in contrast to Si, Ge, and Sn mono-doped TiO2_{2} nanotubes. On the other hand, co-doping of TiO2_{2} does not improve its photocatalytic properties. Our findings are consistent with recent experiments which show an enhancement of light absorption for Si and Sn doped TiO2_{2} nanotubes.Comment: revised and updated, 23 pages (preprint style), 7 figures, 5 table

    Detection mechanism for ferroelectric domain boundaries with lateral force microscopy

    Full text link
    The contrast mechanism for the visualization of ferroelectric domain boundaries with lateral force microscopy is generally assumed to be caused by mechanical deformation of the sample due to the converse piezoelectric effect. We show, however, that electrostatic interactions between the charged tip and the electric fields arising from the surface polarization charges dominate the contrast mechanism. This explanation is sustained by quantitative analysis of the measured forces as well as by comparative measurements on different materials

    Pneumatic capillary gun for ballistic delivery of microparticles

    Full text link
    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to divert substantially all of the flow of Helium from the gun nozzle, thereby preventing the gas from hitting and damaging the target. Speed of ejection of micron-sized gold particles from the gun nozzle, and their depth of penetration into agarose gels are reported.Comment: 7 pages, 3 figure

    Nonlocal van der Waals density functional: The simpler the better

    Get PDF
    We devise a nonlocal correlation energy functional that describes the entire range of dispersion interactions in a seamless fashion using only the electron density as input. The new functional is considerably simpler than its predecessors of a similar type. The functional has a tractable and robust analytic form that lends itself to efficient self-consistent implementation. When paired with an appropriate exchange functional, our nonlocal correlation model yields accurate interaction energies of weakly-bound complexes, not only near the energy minima but also far from equilibrium. Our model exhibits an outstanding precision at predicting equilibrium intermonomer separations in van der Waals complexes. It also gives accurate covalent bond lengths and atomization energies. Hence the functional proposed in this work is a computationally inexpensive electronic structure tool of broad applicability

    Lifetime and polarization of the radiative decay of excitons, biexcitons and trions in CdSe nanocrystal quantum dots

    Get PDF
    Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X+ and X−), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is ~1:1 in large dots (R=19.2 Å). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 Å). (iii) The calculated ratio (X+):(X−) between positive and negative trion lifetimes is close to 2 for all dot sizes considered

    Mechanism for Spontaneous Growth of Nanopillar Arrays in Ultrathin Films Subject to a Thermal Gradient

    Get PDF
    Several groups have reported spontaneous formation of periodic pillar-like arrays in molten polymer nanofilms confined within closely spaced substrates maintained at different temperatures. These formations have been attributed to a radiation pressure instability caused by acoustic phonons. In this work, we demonstrate how variations in the thermocapillary stress along the nanofilm interface can produce significant periodic protrusions in any viscous film no matter how small the initial transverse thermal gradient. The linear stability analysis of the interface evolution equation explores an extreme limit of B\'{e}nard-Marangoni flow peculiar to films of nanoscale dimensions in which hydrostatic forces are altogether absent and deformation amplitudes are small in comparison to the pillar spacing. Finite element simulations of the full nonlinear equation are also used to examine the array pitch and growth rates beyond the linear regime. Inspection of the Lyapunov free energy as a function of time confirms that in contrast to typical cellular instabilities in macroscopically thick films, pillar-like elongations are energetically preferred in nanofilms. Provided there occurs no dewetting during film deformation, it is shown that fluid elongations continue to grow until contact with the cooler substrate is achieved. Identification of the mechanism responsible for this phenomenon may facilitate fabrication of extended arrays for nanoscale optical, photonic and biological applications.Comment: 20 pages, 9 figure
    corecore