15,337 research outputs found

    Half-Skyrmions, Tensor Forces and Symmetry Energy in Cold Dense Matter

    Full text link
    In a previous article, the 4D half-skyrmion (or 5D dyonic salt) structure of dense baryonic matter described in crystalline configuration in the large NcN_c limit was shown to impact nontrivially on how anti-kaons behave in compressed nuclear matter with a possible implication on an "ice-9" phenomenon of deeply bound kaonic matter and condensed kaons in compact stars. We extend the analysis to make a further prediction on the scaling properties of hadrons that have a surprising effect on the nuclear tensor forces, the symmetry energy and hence on the phase structure at high density. We treat this problem relying on certain topological structure of chiral solitons. Combined with what can be deduced from hidden local symmetry for hadrons in dense medium and the "soft" dilatonic degree of freedom associated with the trace anomaly of QCD, we uncover a novel structure of chiral symmetry in the "supersoft" symmetry energy that can influence the structure of neutron stars.Comment: 8 pages, 4 figures; contents unchanged but expanded for a journa

    Rotating Black Hole Entropy from Two Different Viewpoints

    Full text link
    Using the brick-wall method, we study the entropy of Kerr-Newman black hole from two different viewpoints, a rest observer at infinity and zero angular momentum observer near horizon. We investigate this with scalar field in the canonical quantization approach. An observer at infinity can take one of the two possible frequency ranges; one is with positive frequencies only and the other is with the whole range including negative frequencies. On the other hand, a zero angular momentum observer near horizon can take positive frequencies only. For the observer at infinity the superradiant modes appear in either choice of the frequency ranges and the two results coincide. For the zero angular momentum observer superradiant modes do not appear due to absence of ergoregion. The resulting entropies from the two viewpoints turn out to be the same.Comment: LaTeX 18 pages, 2 figures, Minor modifications in section 3(ZAMO

    Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films

    Full text link
    We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.Comment: Accepted by Phys. Rev. Let

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    1-{2-[(Anthracen-10-yl)methyl­ene­amino]phen­yl}-3-phenyl­thio­urea

    Get PDF
    The title compound, C28H21N3S, crystallizes with two mol­ecules in the asymmetric unit. There are only very slight differences in the torsion angles between the two molecules. The two mol­ecules are stabilized by intra­molecular N—H⋯N inter­actions and the crystal packing is stabilized by inter­molecular N—H⋯S inter­actions

    Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films

    Full text link
    We report on antiferroelectriclike double polarization hysteresis loops in multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This intriguing phenomenon is attributed to the domain pinning by defect dipoles which were introduced unintentionally during film growth process. Electron paramagnetic resonance suggests the existence of Fe1+ defects in thin films and first principles calculations reveal that the defect dipoles would be composed of oxygen vacancy and Fe1+ defect. We discuss migration of charged point defects during film growth process and formation of defect dipoles along ferroelectric polarization direction, based on the site preference of point defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is not required to form the defect dipoles in contrast to other ferroelectrics (e.g., BaTiO3).Comment: 4 figure
    corecore