5,809 research outputs found
Open TURNS: An industrial software for uncertainty quantification in simulation
The needs to assess robust performances for complex systems and to answer
tighter regulatory processes (security, safety, environmental control, and
health impacts, etc.) have led to the emergence of a new industrial simulation
challenge: to take uncertainties into account when dealing with complex
numerical simulation frameworks. Therefore, a generic methodology has emerged
from the joint effort of several industrial companies and academic
institutions. EDF R&D, Airbus Group and Phimeca Engineering started a
collaboration at the beginning of 2005, joined by IMACS in 2014, for the
development of an Open Source software platform dedicated to uncertainty
propagation by probabilistic methods, named OpenTURNS for Open source Treatment
of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial
challenges attached to uncertainties, which are transparency, genericity,
modularity and multi-accessibility. This paper focuses on OpenTURNS and
presents its main features: openTURNS is an open source software under the LGPL
license, that presents itself as a C++ library and a Python TUI, and which
works under Linux and Windows environment. All the methodological tools are
described in the different sections of this paper: uncertainty quantification,
uncertainty propagation, sensitivity analysis and metamodeling. A section also
explains the generic wrappers way to link openTURNS to any external code. The
paper illustrates as much as possible the methodological tools on an
educational example that simulates the height of a river and compares it to the
height of a dyke that protects industrial facilities. At last, it gives an
overview of the main developments planned for the next few years
Deformation of LeBrun's ALE metrics with negative mass
In this article we investigate deformations of a scalar-flat K\"ahler metric
on the total space of complex line bundles over CP^1 constructed by C. LeBrun.
In particular, we find that the metric is included in a one-dimensional family
of such metrics on the four-manifold, where the complex structure in the
deformation is not the standard one.Comment: 20 pages, no figure. V2: added two references, filled a gap in the
proof of Theorem 1.2. V3: corrected a wrong statement about Kuranishi family
of a Hirzebruch surface stated in the last paragraph in the proof of Theorem
1.2, and fixed a relevant error in the proof. Also added a reference [24]
about Kuranishi family of Hirzebruch surface
Applications of the Ashtekar gravity to four dimensional hyperk\"ahler geometry and Yang-Mills Instantons
The Ashtekar-Mason-Newman equations are used to construct the hyperk\"ahler
metrics on four dimensional manifolds. These equations are closely related to
anti self-dual Yang-Mills equations of the infinite dimensional gauge Lie
algebras of all volume preserving vector fields. Several examples of
hyperk\"ahler metrics are presented through the reductions of anti self-dual
connections. For any gauge group anti self-dual connections on hyperk\"ahler
manifolds are constructed using the solutions of both Nahm and Laplace
equations.Comment: 9pages, Figures are not include
An Estimate of the Spectral Intensity Expected from the Molecular Bremsstrahlung Radiation in Extensive Air Showers
A detection technique of ultra-high energy cosmic rays, complementary to the
fluorescence technique, would be the use of the molecular Bremsstrahlung
radiation emitted by low-energy electrons left after the passage of the showers
in the atmosphere. The emission mechanism is expected from quasi-elastic
collisions of electrons produced in the shower by the ionisation of the
molecules in the atmosphere. In this article, a detailed calculation of the
spectral intensity of photons at ground level originating from the transitions
between unquantised energy states of free ionisation electrons is presented. In
the absence of absorption of the emitted photons in the plasma, the obtained
spectral intensity is shown to be 5 10^{-26} W m^{-2}Hz^{-1} at 10 km from the
shower core for a vertical shower induced by a proton of 10^{17.5} eV.Comment: 16 pages, 6 figures, accepted in Astroparticle Physics. Compared to
v1 version: 1. Inclusion of ro-vibrational processes. 2. Use of more accurate
ionization potential values and energy distribution of the secondary
electron
EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6
We present a study of the high-energy diffuse emission observed toward Orion
by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton
Gamma-Ray Observatory. The total exposure by EGRET in this region has increased
by more than a factor of two since a previous study. A simple model for the
diffuse emission adequately fits the data; no significant point sources are
detected in the region studied ( to and ) in either the composite dataset or in two separate
groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion
is found to be for E > 100 MeV,
and the differential emissivity is well-described as a combination of
contributions from cosmic-ray electrons and protons with approximately the
local density. The molecular mass calibrating ratio is .Comment: 16 pages, including 5 figures. 3 Tables as three separate files.
Latex document, needs AASTEX style files. Accepted for publication in Ap
The influence of the global atmospheric properties on the detection of UHECR by EUSO on board of the ISS
Land and sea BRDF laboratory measurements at 360 nm in view of ground reflected Cherenkov light detection in EUSO
South-West extension of the hard X-ray emission from the Coma cluster
We explore the morphology of hard (18-30 keV) X-ray emission from the Coma
cluster of galaxies. We analyze a deep (1.1 Ms) observation of the Coma cluster
with the ISGRI imager on board the \emph{INTEGRAL} satellite. We show that the
source extension in the North-East to South-West (SW) direction ()
significantly exceeds the size of the point spread function of ISGRI, and that
the centroid of the image of the source in the 18-30 keV band is displaced in
the SW direction compared to the centroid in the 1-10 keV band. To test the
nature of the SW extension we fit the data assuming different models of source
morphology. The best fit is achieved with a diffuse source of elliptical shape,
although an acceptable fit can be achieved assuming an additional point source
SW of the cluster core. In the case of an elliptical source, the direction of
extension of the source coincides with the direction toward the subcluster
falling onto the Coma cluster. If the SW excess is due to the presence of a
point source with a hard spectrum, we show that there is no obvious X-ray
counterpart for this additional source, and that the closest X-ray source is
the quasar EXO 1256+281, which is located from the centroid of the
excess. The observed morphology of the hard X-ray emission clarifies the nature
of the hard X-ray "excess" emission from the Coma cluster, which is due to the
presence of an extended hard X-ray source SW of the cluster core.Comment: 7pages, 10 figure
In-flight calibration of the INTEGRAL/IBIS mask
Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software
version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS
imaging procedure, leading to an improvement of the sensitivity around bright
sources up to a factor of 7. This module excludes in the deconvolution process
the IBIS/ISGRI detector pixels corresponding to the projection of a bright
source through mask elements affected by some defects. These defects are most
likely associated with screws and glue fixing the IBIS mask to its support.
Following these major improvements introduced in OSA 9, a second order
correction is still required to further remove the residual noise, now at a
level of 0.2-1% of the brightest source in the field of view. In order to
improve our knowledge of the IBIS mask transparency, a calibration campaign has
been carried out during 2010-2012. We present here the analysis of these data,
together with archival observations of the Crab and Cyg X-1, that allowed us to
build a composite image of the mask defects and to investigate the origin of
the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able
to point out a simple modification of the ISGRI analysis software that allows
to significantly improve the quality of the images in which bright sources are
detected at the edge of the field of view. Moreover, a refinement of the area
excluded by the ghost busters module is considered, and preliminary results
show improvements to be further tested. Finally, this study indicates further
directions to be investigated for improving the ISGRI sensitivity, such as
taking into account the thickness of the screws in the mask model or studying
the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of
the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October
15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds.
A. Goldwurm, F. Lebrun and C. Winkler,
(http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4
figures, see the PoS website for the full resolution versio
- …
