236 research outputs found

    Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor)

    Get PDF
    Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Funding provided by: Hermon Slade FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001109Award Number: HSF08-6Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP0557022Methods are described in the published article

    Acute visceral pain relief mediated by A(3)AR agonists in rats: involvement of N-type voltage-gated calcium channels

    Get PDF
    Pharmacological tools for chronic visceral pain management are still limited and inadequate. A(3) adenosine receptor (A(3)AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca(2+) channels (Ca(v)2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A(3)AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A(3)AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Ca(v)2.2 blocker PD173212, and the clinically used drug linaclotide. A(3)AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Ca(v)2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A(3)AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A(3)AR agonists inhibited Ca(v)2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca(2+) current was PD173212-sensitive and prevented by MRS1523. A(3)AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain

    Isolation and monoculture of functional primary astrocytes from the adult mouse spinal cord

    Get PDF
    Astrocytes are a widely heterogenic cell population that play major roles in central nervous system (CNS) homeostasis and neurotransmission, as well as in various neuropathologies, including spinal cord injury (SCI), traumatic brain injury, and neurodegenerative diseases, such as amyotrophic lateral sclerosis. Spinal cord astrocytes have distinct differences from those in the brain and accurate modeling of disease states is necessary for understanding disease progression and developing therapeutic interventions. Several limitations to modeling spinal cord astrocytes in vitro exist, including lack of commercially available adult-derived cells, lack of purchasable astrocytes with different genotypes, as well as time-consuming and costly in-house primary cell isolations that often result in low yield due to small tissue volume. To address these issues, we developed an efficient adult mouse spinal cord astrocyte isolation method that utilizes enzymatic digestion, debris filtration, and multiple ACSA-2 magnetic microbead purification cycles to achieve an astrocyte monoculture purity of ≅93–98%, based on all markers assessed. Importantly, the isolated cells contain active mitochondria and express key astrocyte markers including ACSA-1, ACSA-2, EAAT2, and GFAP. Furthermore, this isolation method can be applied to the spinal cord of male and female mice, mice subjected to SCI, and genetically modified mice. We present a primary adult mouse spinal cord astrocyte isolation protocol focused on purity, viability, and length of isolation that can be applied to a multitude of models and aid in targeted research on spinal-cord related CNS processes and pathologies

    Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort

    Get PDF
    Abstract Introduction Although pregnancy-related factors such as nulliparity and late age at first full-term pregnancy are well-established risk factors for invasive breast cancer, the roles of these factors in the natural history of breast cancer development remain unclear. Methods Among 52,464 postmenopausal women participating in the California Teachers Study (CTS), 624 were diagnosed with breast carcinoma in situ (CIS) and 2,828 with invasive breast cancer between 1995 and 2007. Multivariable Cox proportional hazards regression methods were used to estimate relative risks associated with parity, age at first full-term pregnancy, breastfeeding, nausea or vomiting during pregnancy, and preeclampsia. Results Compared with never-pregnant women, an increasing number of full-term pregnancies was associated with greater risk reduction for both breast CIS and invasive breast cancer (both P trend < 0.01). Women having four or more full-term pregnancies had a 31% lower breast CIS risk (RR = 0.69, 95% CI = 0.51 to 0.93) and 18% lower invasive breast cancer risk (RR = 0.82, 95% CI = 0.72 to 0.94). Parous women whose first full-term pregnancy occurred at age 35 years or later had a 118% greater risk for breast CIS (RR = 2.18, 95% CI = 1.36 to 3.49) and 27% greater risk for invasive breast cancer (RR = 1.27, 95% CI = 0.99 to 1.65) than those whose first full-term pregnancy occurred before age 21 years. Furthermore, parity was negatively associated with the risk of estrogen receptor-positive (ER+) or ER+/progesterone receptor-positive (PR+) while age at first full-term pregnancy was positively associated with the risk of ER+ or ER+/PR+ invasive breast cancer. Neither of these factors was statistically significantly associated with the risk of ER-negative (ER-) or ER-/PR- invasive breast cancer, tests for heterogeneity between subtypes did not reach statistical significance. No clear associations were detected for other pregnancy-related factors. Conclusions These results provide some epidemiologic evidence that parity and age at first full-term pregnancy are involved in the development of breast cancer among postmenopausal women. The role of these factors in risk of in situ versus invasive, and hormone receptor-positive versus -negative breast cancer merits further exploration

    Gap junctions in olfactory neurons modulate olfactory sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis.</p> <p>Results</p> <p>I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/β-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/β-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited <it>c-fos </it>mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons.</p> <p>Conclusions</p> <p>My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory sensitivity and odor perception.</p
    corecore