472 research outputs found
A geometric optics method for high-frequency electromagnetic fields computations near fold caustics—Part II. The energy
AbstractWe present the computation of the amplitudes needed to evaluate the energy deposited by the laser wave in a plasma when a fold caustic forms. We first recall the Eulerian method designed in Benamou et al. (J. Comput. Appl. Math. 156 (2003) 93) to compute the caustic location and the phases associated to the two ray branches on its illuminated side. We then turn to the computation of the amplitudes needed to evaluate the energy. We use the classical geometrical form of the amplitudes to avoid the blow up problem at the caustic. As our proposed method is Eulerian we have to consider transport equations for these geometrical quantities where the advection field depends on the ray flow. The associated vector field structurally vanishes like the square root of the distance to the caustic when approaching the caustic. This introduces an additional difficulty as traditional finite difference scheme do not retain their accuracy for such advection fields. We propose a new scheme which remains of order 1 at the caustic and present a partial theoretical analysis as well as a numerical validation. We also test the capability of our Eulerian geometrical algorithm to produce numerical solution of the Helmholtz equation and attempt to check their frequency asymptotic accuracy
Classical motion in force fields with short range correlations
We study the long time motion of fast particles moving through time-dependent
random force fields with correlations that decay rapidly in space, but not
necessarily in time. The time dependence of the averaged kinetic energy and
mean-squared displacement is shown to exhibit a large degree of universality;
it depends only on whether the force is, or is not, a gradient vector field.
When it is, p^{2}(t) ~ t^{2/5} independently of the details of the potential
and of the space dimension. Motion is then superballistic in one dimension,
with q^{2}(t) ~ t^{12/5}, and ballistic in higher dimensions, with q^{2}(t) ~
t^{2}. These predictions are supported by numerical results in one and two
dimensions. For force fields not obtained from a potential field, the power
laws are different: p^{2}(t) ~ t^{2/3} and q^{2}(t) ~ t^{8/3} in all dimensions
d\geq 1
Time-Varying Gravitomagnetism
Time-varying gravitomagnetic fields are considered within the linear
post-Newtonian approach to general relativity. A simple model is developed in
which the gravitomagnetic field of a localized mass-energy current varies
linearly with time. The implications of this temporal variation of the source
for the precession of test gyroscopes and the motion of null rays are briefly
discussed.Comment: 10 pages; v2: slightly expanded version accepted for publication in
Class. Quantum Gra
Three-dimensional computed tomography angiography of the pulmonary veins and their anatomical variations: involvement in video-assisted thoracoscopic surgery-lobectomy for lung cancer
Background: Identification and section of pulmonary veins are an essential part of anatomical pulmonary resections. Intraoperative misunderstandings of pulmonary venous anatomy can lead to serious complications such as bleeding and delayed lung infarction or necrosis. We evaluated principally the rate of pulmonary venoÂus anatomical variations, and secondarily the reliability and clinical outcomes of a preoperative morphological analysis.
Materials and methods: Between November 2012 and October 2013, we studied 100 consecutive patients with highly suspected or diagnosed stage I-II primitive lung cancer lesion. The surgical procedure initially retained was video-assisted thoracoscopic surgery (VATS) pulmonary resections and we studied preoperatively the proximal pulmonary venous anatomy using 64 channels multi- -detector computed tomography (CT)-scan angiography to describe the venous anatomical variations.
Results: There were 65 men and 35 women with a mean age of 63 years. A pulmonary venous anatomical variation was present in 36 (36%) patients, and right-sided anatomical variations were more frequent than on left-sided ones (25% vs. 11%). The most frequent variation encountered on the right side was the existence of three separate pulmonary veins (16%), and on the left side a single pulmonary vein (8%). Surgical conversion occurred in 21% and we didn’t experience a pulmonary venous lesion (0%) or a post-operative lung infarction (0%).
Conclusions: We described pulmonary venous anatomical variations and their frequency. Anatomical variations exist and preoperative assessment of pulmoÂnary venous anatomy using CT scan is a useful tool in VATS lobectomy to avoid unnecessary extension of pulmonary resections or iatrogenic complications in lung cancer surgery
Radioscience simulations in General Relativity and in alternative theories of gravity
In this communication, we focus on the possibility to test GR with
radioscience experiments. We present a new software that in a first step
simulates the Range/Doppler signals directly from the space time metric (thus
in GR and in alternative theories of gravity). In a second step, a
least-squares fit of the involved parameters is performed in GR. This software
allows one to get the order of magnitude and the signature of the modifications
induced by an alternative theory of gravity on radioscience signals. As
examples, we present some simulations for the Cassini mission in
Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation
session
Normal transport properties for a classical particle coupled to a non-Ohmic bath
We study the Hamiltonian motion of an ensemble of unconfined classical
particles driven by an external field F through a translationally-invariant,
thermal array of monochromatic Einstein oscillators. The system does not
sustain a stationary state, because the oscillators cannot effectively absorb
the energy of high speed particles. We nonetheless show that the system has at
all positive temperatures a well-defined low-field mobility over macroscopic
time scales of order exp(-c/F). The mobility is independent of F at low fields,
and related to the zero-field diffusion constant D through the Einstein
relation. The system therefore exhibits normal transport even though the bath
obviously has a discrete frequency spectrum (it is simply monochromatic) and is
therefore highly non-Ohmic. Such features are usually associated with anomalous
transport properties
Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers
General relativistic deflection of light by mass, dipole, and quadrupole
moments of gravitational field of a moving massive planet in the Solar system
is derived. All terms of order 1 microarcsecond are taken into account,
parametrized, and classified in accordance with their physical origin. We
calculate the instantaneous patterns of the light-ray deflections caused by the
monopole, the dipole and the quadrupole moments, and derive equations
describing apparent motion of the deflected position of the star in the sky
plane as the impact parameter of the light ray with respect to the planet
changes due to its orbital motion. The present paper gives the physical
interpretation of the observed light-ray deflections and discusses the
observational capabilities of the near-future optical (SIM) and radio (SKA)
interferometers for detecting the Doppler modulation of the radial deflection,
and the dipolar and quadrupolar light-ray bendings by the Jupiter and the
Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.
Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers
Molecular-marker loci were used to investigate
the adaptation differences between highland and
lowland tropical maize. An F2 population from the cross
of two inbred lines independently derived from highland
and lowland maize germplasm was developed, and extracted
F3:4 lines were phenotype in replicated field trials
at four thermally diverse tropical testing sites, ranging
from lowland to extreme highland (mean growing season
temperature range 13.2–24.6°C). Traits closely related
with adaptation, such as biomass and grain yield, yield
components, days from sowing to male and female flowering,
total leaf number, plant height and number of primary
tassel branches (TBN), were analyzed. A large line
´ environment interaction was observed for most traits.
The genetic basis of this interaction was reflected by significant,
but systematic, changes from lowland to highland
sites in the correlation between the trait value and
genomic composition (designated by the proportion of
marker alleles with the same origin). Joint analysis of
quantitative trait loci (QTLs) over sites detected 5–8
QTLs for each trait (except disease scores, with data only
from one site). With the exception of one QTL for
TBN, none of these accounted for more than 15% of the
total phenotypic variation. In total, detected QTLs accounted
for 24–61% of the variation at each site on average.
For yield, yield components and disease scores, alleles
generally favored the site of origin. Highland-derived
alleles had little effect at lowland sites, while lowland-
derived alleles showed relatively broader adaptation.
Gradual changes in the estimated QTL effects with
increasing mean site temperature were observed, and
paralleled the observed patterns of adaptation in high land and lowland germplasm. Several clusters of QTLs
for different traits reflected the relative importance in the
adaptation differences between the two germplasm types,
and pleiotropy is suggested as the main cause for the
clustering. Breeding for broad thermal adaptation should
be possible by pooling genes showing adaptation to specific
thermal regimes, though perhaps at the expense of
reduced progress for adaptation to a specific site. Molecular
marker-assisted selection would be an ideal tool for
this task, since it could greatly reduce the linkage drag
caused by the unintentional transfer of undesirable trait
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
- …