584 research outputs found
Classical motion in force fields with short range correlations
We study the long time motion of fast particles moving through time-dependent
random force fields with correlations that decay rapidly in space, but not
necessarily in time. The time dependence of the averaged kinetic energy and
mean-squared displacement is shown to exhibit a large degree of universality;
it depends only on whether the force is, or is not, a gradient vector field.
When it is, p^{2}(t) ~ t^{2/5} independently of the details of the potential
and of the space dimension. Motion is then superballistic in one dimension,
with q^{2}(t) ~ t^{12/5}, and ballistic in higher dimensions, with q^{2}(t) ~
t^{2}. These predictions are supported by numerical results in one and two
dimensions. For force fields not obtained from a potential field, the power
laws are different: p^{2}(t) ~ t^{2/3} and q^{2}(t) ~ t^{8/3} in all dimensions
d\geq 1
Time-Varying Gravitomagnetism
Time-varying gravitomagnetic fields are considered within the linear
post-Newtonian approach to general relativity. A simple model is developed in
which the gravitomagnetic field of a localized mass-energy current varies
linearly with time. The implications of this temporal variation of the source
for the precession of test gyroscopes and the motion of null rays are briefly
discussed.Comment: 10 pages; v2: slightly expanded version accepted for publication in
Class. Quantum Gra
Radioscience simulations in General Relativity and in alternative theories of gravity
In this communication, we focus on the possibility to test GR with
radioscience experiments. We present a new software that in a first step
simulates the Range/Doppler signals directly from the space time metric (thus
in GR and in alternative theories of gravity). In a second step, a
least-squares fit of the involved parameters is performed in GR. This software
allows one to get the order of magnitude and the signature of the modifications
induced by an alternative theory of gravity on radioscience signals. As
examples, we present some simulations for the Cassini mission in
Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation
session
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
Normal transport properties for a classical particle coupled to a non-Ohmic bath
We study the Hamiltonian motion of an ensemble of unconfined classical
particles driven by an external field F through a translationally-invariant,
thermal array of monochromatic Einstein oscillators. The system does not
sustain a stationary state, because the oscillators cannot effectively absorb
the energy of high speed particles. We nonetheless show that the system has at
all positive temperatures a well-defined low-field mobility over macroscopic
time scales of order exp(-c/F). The mobility is independent of F at low fields,
and related to the zero-field diffusion constant D through the Einstein
relation. The system therefore exhibits normal transport even though the bath
obviously has a discrete frequency spectrum (it is simply monochromatic) and is
therefore highly non-Ohmic. Such features are usually associated with anomalous
transport properties
Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers
General relativistic deflection of light by mass, dipole, and quadrupole
moments of gravitational field of a moving massive planet in the Solar system
is derived. All terms of order 1 microarcsecond are taken into account,
parametrized, and classified in accordance with their physical origin. We
calculate the instantaneous patterns of the light-ray deflections caused by the
monopole, the dipole and the quadrupole moments, and derive equations
describing apparent motion of the deflected position of the star in the sky
plane as the impact parameter of the light ray with respect to the planet
changes due to its orbital motion. The present paper gives the physical
interpretation of the observed light-ray deflections and discusses the
observational capabilities of the near-future optical (SIM) and radio (SKA)
interferometers for detecting the Doppler modulation of the radial deflection,
and the dipolar and quadrupolar light-ray bendings by the Jupiter and the
Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.
Superspreading: Mechanisms and Molecular Design
The
intriguing ability of certain surfactant molecules to drive
the superspreading of liquids to complete wetting on hydrophobic substrates
is central to numerous applications that range from coating flow technology
to enhanced oil recovery. Despite significant experimental efforts,
the precise mechanisms underlying superspreading remain unknown to
date. Here, we isolate these mechanisms by analyzing coarse-grained
molecular dynamics simulations of surfactant molecules of varying
molecular architecture and substrate affinity. We observe that for
superspreading to occur, two key conditions must be simultaneously
satisfied: the adsorption of surfactants from the liquid–vapor
surface onto the three-phase contact line augmented by local bilayer
formation. Crucially, this must be coordinated with the rapid replenishment
of liquid–vapor and solid–liquid interfaces with surfactants
from the interior of the droplet. This article also highlights and
explores the differences between superspreading and conventional surfactants,
paving the way for the design of molecular architectures tailored
specifically for applications that rely on the control of wetting
Non-local kinetic and macroscopic models for self-organised animal aggregations
The last two decades have seen a surge in kinetic and macroscopic models derived to investigate the multi-scale aspects of self-organised biological aggregations. Because the individual-level details incorporated into the kinetic models (e.g., individual speeds and turning rates) make them somewhat difficult to investigate, one is interested in transforming these models into simpler macroscopic models, by using various scaling techniques that are imposed by the biological assumptions of the models. However, not many studies investigate how the dynamics of the initial models are preserved via these scalings. Here, we consider two scaling approaches (parabolic and grazing collision limits) that can be used to reduce a class of non-local 1D and 2D models for biological aggregations to simpler models existent in the literature. Then, we investigate how some of the spatio-temporal patterns exhibited by the original kinetic models are preserved via these scalings. To this end, we focus on the parabolic scaling for non-local 1D models and apply asymptotic preserving numerical methods, which allow us to analyse changes in the patterns as the scaling coefficient ϵ is varied from ϵ=1 (for 1D transport models) to ϵ=0 (for 1D parabolic models). We show that some patterns (describing stationary aggregations) are preserved in the limit ϵ→0, while other patterns (describing moving aggregations) are lost. To understand the loss of these patterns, we construct bifurcation diagrams
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
- …
