323 research outputs found

    Can metal organic frameworks outperform adsorptive removal of harmful phenolic compound 2-chlorophenol by activated carbon?

    Get PDF
    Removal of persistent organic compounds from aqueous solutions is generally achieved using adsorbent like activated carbon (AC) but it suffers from limited adsorption capacity due to low surface area. This paper describes a pioneering work on the adsorption of an organic pollutant, 2-chlorophenol (2-CP) by two MOFs with high surface area and water stability; MIL-101 and its amino-derivative, MIL-101-NH2. Although MOFs have higher surface area than AC, the latter was proven better having the highest equilibrium 2-CP uptake (345 mg g−1), followed by MIL-101 (121 mg g−1) and MIL-101-NH2 (84 mg g−1). Used MIL-101 could be easily regenerated multiple times by washing with ethanol and even showed improved adsorption capacity after each washing cycle. These results can open the doors to meticulous adsorbent selection for treating 2-CP-contaminated water

    Developing Critical Thinking in Female Teacher Candidates at SQU: A Predictive Model

    Get PDF
    The purpose of this paper was to articulate the way in which socio-cultural factors influence the propensity for critical thinking among female teacher candidates at Sultan Qaboos University (SQU) in Oman. The sample consisted of 274. Twelve independent variables were ascertained, relating to key Omani institutions and forms of socio-cultural capital. A significant model to predict critical thinking identified religious beliefs and practices, family support for a knowledge society, valuing individual qualities (motivation participation and learning outcomes) over other forms of capital, and the state’s endorsement of the role of teachers as loyal civil servants and trusted agents of change. Implications for teacher education programs and future research are also presented

    Solvent‐induced enantioselectivity reversal in a chiral metal organic framework

    Get PDF
    Solvent-induced enantioselectivity reversal is a rarely reported phenomenon in porous homochiral materials. Similar behavior has been studied in chiral high performance liquid chromatography, where minor modifications to the mobile phase can induce elution order reversal of two enantiomers on a chiral stationary phase column. We report the first instance of solvent-induced enantioselectivity reversal in a homochiral metal organic framework. Further, we highlight the complex enantioselectivity behavior of homochiral metal organic frameworks toward racemic mixtures in the presence of solvents through racemate-solvent enantioselectivity and loading experiments as well as enantiopure-solvent loading experiments. We hypothesize that this interesting selectivity reversal behavior is likely to be observed in other competitive adsorption, nonchiral selective processes involving a solvent

    Nanocomposite Nafion-Silica membranes for direct methanol fuel cells

    Get PDF
    Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed

    Ordered three-fold symmetric graphene oxide/buckled graphene/graphene heterostructures on MgO(111) by carbon molecular beam epitaxy

    Get PDF
    Theory and experiment demonstrate the direct growth of a graphene oxide/buckled graphene/graphene heterostructure on an incommensurate MgO(111) substrate. X-ray photoelectron spectroscopy, electron energy loss, Auger electron spectroscopy, low energy electron diffraction, Raman spectroscopy and first-principles density functional theory (DFT) calculations all demonstrate that carbon molecular beam epitaxy on either a hydroxylated MgO(111) single crystal or a heavily twinned thin film surface at 850 K yields an initial C layer of highly ordered graphene oxide with C_(3v) symmetry. A 5 × 5 unit cell of carbon, with one missing atom, forms on a 4 × 4 unit cell of MgO, with the three C atoms surrounding the C vacancy surface forming covalent C–O bonds to substrate oxide sites. This leads to a bowed graphene-oxide with slightly modified D and G Raman lines and a calculated band gap of 0.36 eV. Continued C growth results in the second layer of graphene that is stacked AB with respect to the first layer and buckled conformably with the first layer while maintaining C_(3v) symmetry, lattice spacing and azimuthal orientation with the first layer. Carbon growth beyond the second layer yields graphene in azimuthal registry with the first two C layers, but with graphene-characteristic lattice spacing and π → π* loss feature. This 3rd layer is also p-type, as indicated by the 5.6 eV energy loss feature. The significant sp^3 character and C_(3v) symmetry of such heterostructures suggest that spin–orbit coupling is enabled, with implications for spintronics and other device applications

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease

    Get PDF
    \ua9 2023Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). Funding: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    Efficacy of conventional treatment with composite resin and atraumatic restorative treatment in posterior primary teeth: study protocol for a randomised controlled trial

    Get PDF
    Introduction Despite the widespread acceptance of conventional treatment using composite resin in primary teeth, there is limited evidence that this approach is the best option in paediatric clinics. Atraumatic restorative treatment (ART) using high-viscosity glass ionomer cement has gradually become more popular because it performs well in clinical studies, is easy to handle and is patient friendly. Therefore, the aim of this randomised clinical trial study is to compare the restoration longevity of conventional treatment using composite resin with that of ART in posterior primary teeth. As secondary outcomes, cost-efficacy and patient self-reported discomfort will also be tested. Methods and analysis Children aged 3–6 years presenting with at least one occlusal and/or occlusalproximal cavity will be randomly assigned to one of two groups according to the dental treatment: ART (experimental group) or composite resin restoration (control group). The dental treatment will be performed at a dental care trailer located in an educational complex in Barueri/SP, Brazil. The unit of randomisation will be the child. A sample size of 240 teeth with occlusal cavities and 188 teeth with occlusal-proximal cavities has been calculated. The primary outcome will be restoration longevity, which will be clinically assessed after 6, 12, 18 and 24 months by two examiners. The duration of the dental treatment and the cost of all materials used will be considered when estimating the cost-efficacy of each treatment. Individual discomfort will be measured after each dental procedure using the Facial Scale of WongBaker. Ethics and dissemination This clinical trial was approved by the local ethics committee from the Faculty of Dentistry of the University of São Paulo (registration no. 1.556.018). Participants will be included after their legal guardians have signed an informed consent form containing detailed information about the research

    Detection and Verification of Mammalian Mirtrons by Northern Blotting

    Get PDF
    microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes

    A Developmental Perspective on Community Service in Adolescence

    Get PDF
    A substantial number of U.S. adolescents currently participate in community service and there is increased national interest in service programs. This article assesses the assumption of developmental benefits to service participants by critically reviewing 44 empirical studies. It offers a theoretical framework for understanding the findings by connecting them to identity development and delineating three pertinent concepts: agency, social relatedness, and moral-political awareness. These concepts are applied to studies that investigate: ( 1) the characteristics and motivations of participants, ( 2) the effects of service, and ( 3) the process of service. The findings support the conclusion that service activities which provide opportunities for intense experiences and social interactions are often associated with prosocial development. The findings also point to the need for more studies focused on particular service programs and on relationships between service providers and those served

    Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    Get PDF
    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation
    corecore