1,705,243 research outputs found

    Chiral discrimination in optical binding

    Get PDF
    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported

    Photoproduction of K+ΛK^{*+}\Lambda and K+Σ(1385)K^+\Sigma(1385) in the reaction \gamma \lowercase{p} \to K^+ \Lambda \pi^0 at Jefferson Lab

    Full text link
    The search for missing nucleon resonances using coupled channel analysis has mostly been concentrated on NπN\pi and KYKY channels, while the contributions of KYK^*Y and KYKY^* channels have not been investigated thoroughly mostly due to the lack of data. With an integrated luminosity of about 75 pb1pb^{-1}, the photoproduction data using a proton target recently collected by the CLAS Collaboration at Jefferson Lab with a photon energy range of 1.5-3.8 GeV provided large statistics for the study of light hyperon photoproduction through exclusive reactions. The reaction γpK+Λπ0\gamma p \to K^+ \Lambda \pi^0 has been investigated. Preliminary results of the K+ΛK^{*+}\Lambda and K+Σ(1385)K^+\Sigma(1385) cross sections are not negligible compared with the KYKY channels. The Λπ0\Lambda \pi^0 invariant mass spectrum is dominated by the Σ(1385)\Sigma(1385) signal and no significant structure was found around the Σ(1480)\Sigma(1480) region.Comment: 4 pages, 3 figures, to be publised on the NSTAR05 proceeding

    Graphene nanoribbons subject to gentle bends

    Full text link
    Since graphene nanoribbons are thin and flimsy, they need support. Support gives firm ground for applications, and adhesion holds ribbons flat, although not necessarily straight: ribbons with high aspect ratio are prone to bend. The effects of bending on ribbons' electronic properties, however, are unknown. Therefore, this article examines the electromechanics of planar and gently bent graphene nanoribbons. Simulations with density-functional tight-binding and revised periodic boundary conditions show that gentle bends in armchair ribbons can cause significant widening or narrowing of energy gaps. Moreover, in zigzag ribbons sizeable energy gaps can be opened due to axial symmetry breaking, even without magnetism. These results infer that, in the electronic measurements of supported ribbons, such bends must be heeded.Comment: 5 pages, 4 figure

    Scaling of v2v_2 in heavy ion collisions

    Full text link
    We interpret the scaling of the corrected elliptic flow parameter w.r.t. the corrected multiplicity, observed to hold in heavy ion collisions for a wide variety of energies and system sizes. We use dimensional analysis and power-counting arguments to place constraints on the changes of initial conditions in systems with different center of mass energy s\sqrt{s}. Specifically, we show that a large class of changes in the (initial) equation of state, mean free path, and longitudinal geometry over the observed s\sqrt{s} are likely to spoil the scaling in v2v_2 observed experimentally. We therefore argue that the system produced at most Super Proton Synchrotron (SPS) and Relativistic Heavy Ion Collider (RHIC) energies is fundamentally the same as far as the soft and approximately thermalized degrees of freedom are considered. The ``sQGP'' (Strongly interacting Quark-Gluon Plasma) phase, if it is there, is therefore not exclusive to RHIC. We suggest, as a goal for further low-energy heavy ion experiments, to search for a ``transition'' s\sqrt{s} where the observed scaling breaks.Comment: Accepted for publication by Phys. Rev. C Based on presentation in mini-symposium on QGP collective properties, Frankfurt. Discussion expanded, results adde

    Effects of the Symmetry Energy and its Slope on Neutron Star Properties

    Full text link
    In this work we study the influence of the symmetry energy and its slope on three major properties of neutron stars: the maximum mass, the radii of the canonical 1.4MM_\odot and the minimum mass that enables the direct URCA effect. We utilize four parametrizations of the relativistic quantum hadrodynamics and vary the symmetry energy within accepted values. We see that although the maximum mass is almost independent of it, the radius of the canonical 1.4M1.4M_\odot and the mass that enables the direct URCA effect is strongly correlated with the symmetry energy and its slope. Also, since we expect that the radius grows with the slope, a theoretical limit arises when we increase this quantity above certain values.Comment: RevTEX; 19 pages, 13 figure

    Boundedness and Stability of Impulsively Perturbed Systems in a Banach Space

    Full text link
    Consider a linear impulsive equation in a Banach space x˙(t)+A(t)x(t)=f(t), t0,\dot{x}(t)+A(t)x(t) = f(t), ~t \geq 0, x(τi+0)=Bix(τi0)+αi,x(\tau_i +0)= B_i x(\tau_i -0) + \alpha_i, with limiτi=\lim_{i \rightarrow \infty} \tau_i = \infty . Suppose each solution of the corresponding semi-homogeneous equation x˙(t)+A(t)x(t)=0,\dot{x}(t)+A(t)x(t) = 0, (2) is bounded for any bounded sequence {αi}\{ \alpha_i \}. The conditions are determined ensuring (a) the solution of the corresponding homogeneous equation has an exponential estimate; (b) each solution of (1),(2) is bounded on the half-line for any bounded ff and bounded sequence {αi}\{ \alpha_i \} ; (c) limtx(t)=0\lim_{t \rightarrow \infty}x(t)=0 for any f,αif, \alpha_i tending to zero; (d) exponential estimate of ff implies a similar estimate for xx.Comment: 19 pages, LaTex-fil

    Low density expansion and isospin dependence of nuclear energy functional: comparison between relativistic and Skyrme models

    Full text link
    In the present work we take the non relativistic limit of relativistic models and compare the obtained functionals with the usual Skyrme parametrization. Relativistic models with both constant couplings and with density dependent couplings are considered. While some models present very good results already at the lowest order in the density, models with non-linear terms only reproduce the energy functional if higher order terms are taken into account in the expansion.Comment: 16 pages,6 figures,5 table

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics
    corecore